导轮增设单向离合器
将液力变矩器的导轮通过单向离合器固定在变速器外壳上,单向离合器内圈与导轮和变速器外壳相连,是固定不动的;外圈与导轮相连,可与导轮一起按泵轮同一方向旋转。设置单向离合器后,当速比较小,转速差大时,导轮仍被锁住不动,ATF改变方向后流向泵轮背面,促使泵轮旋转,仍能起增扭作用;转速比较大,涡轮与泵轮转速差小时,ATF冲击导轮背面,这时导轮按泵轮的相同方向自由旋转,ATF即顺利地回流到泵轮。这时,变矩器不产生增扭作用,其功能同普通液力耦合器一样。因此,,。同时,转矩也增加,这是因为导轮内的ATF在导轮自由旋转时,对液流方向的阻力减小,循环流速增大的缘故。其特性如图3-11所示。
液力变矩器内单向离合器的结构型式有棘轮型、滚柱型和楔块型三种,现在广泛使用的是后两种。单向离合器是单向传递力矩的,即用单向离合器连接起来的两个元件之间,可按受力关系不同,自动地实现锁定不动或分离自由旋转两种状态,单向离合器传递力矩的容量比摩擦离合器大,能够按回转方向自动平稳地进行驱动和空转的转换。
图3-11 综合式液力变矩器特性曲线 |
(1)滚柱型单向离合器
图3-12滚柱型单向离合器 |
工作时,外圈是主动件,在外力矩作用下使外圈按逆时针方向回转,图中“锁止”方向旋转,滚柱将卡死在外圈内表面和轮毂外表面构成的楔形室的较窄的一端,外圈被楔紧不能旋转(导轮处于锁止状态)。当外力矩改变作用方向,图中“自由”方向,滚柱在压紧弹簧的作用下,仍停留在楔形腔室的较窄的一端,但在摩擦力的作用下,有向较宽的一端移动的趋势,由于此时接触表面上的压力很小,使其不能楔紧而处于分离状态。于是外圈与轮毂脱开,并相对轮毂自由旋转(导轮处于分离状态)。
图3-13楔块型单向离合器 |
图3-14 四元件综合式液力变矩器 |
图3-15 双导轮液力变矩器特性曲线 |
图3-16 带锁止离合器的液力变矩器特性曲线 |
图3-17 带锁止离合器的液力变矩器 |
(a) 锁止离合器分离 (b) 锁止离合器结合 |
图3-18 锁止离合器工作原理 |
车辆低速行驶时,速比较小,液力变矩器处于变矩工况。此时,由电液控制,ATF经变速器输入轴中心油道进入锁止离合器前部,在油压的作用下,离合器压盘向右移动,故锁止离合器分离(见图3-18a);当车辆转入高速行驶时,速比之增大至一定值,液力变矩器转换成液力耦合工况,此时,电液自动操纵系统控制通向变矩器的液流方向反向,即ATF由轮轴套上的油道流入变矩器内部,经变速器输入轴中心油道排除,故离合器压盘前后侧油压不等,前侧油压低,后侧油压高,存在着油压差。因此,离合器压盘在该油压差的作用下向前移动压靠在前盖上,锁止离合器闭锁(见图3-18b),泵轮与涡轮作为一个整体部件旋转,这样就提高了高速下液力变矩器的传动效率。
当闭锁离合器接合时,导轮单向离合器即脱开,导轮自由旋转。泵轮和涡轮虽然是同速转动,但与导轮有一定的转速差,因此,在变矩器内仍有少量液流作循环流动,从而有一定的液力损失,即使成为直接机械传动,传动效率也略低于100%,损失在1%~3%之间。
( )