从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于机器对未来的预测,一般应用于分类、聚类、推荐、关联规则等。从分析的过程来看,数据分析更侧重于统计学上面的一些方法,经过人的推理演译得到结论;数据挖掘更侧重由机器进行自学习,直接到得到结论。从分析的结果看,数据分析的结果是准确的统计量,而数据挖掘得到的一般是模糊的结果。“数据分析”的重点是观察数据,“数据挖掘”的重点是从数据中发现“知识规则”kdd(knowledge discover in database)。“数据分析、数据统计”得出的结论是人的智力活动结果,“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则。“数据分析”需要人工建模,“数据挖掘”自动完成数学建模。