数据挖掘利用了人工智能(al)和统计分析的进步带来了许多好处。这两门学科都致力于模式发现和预测。 一些新兴的技术同样在知识发现领域取得了很好的效果,如神经元网络和决策树,在足够多的数据和计算能力下,它们几乎不用人的关照自动就能完成许多有价值功能。 数据挖掘就是利用了统计和人工智能技术的算法及技术,把这些高深复杂的技术封装起来,使人们不用自已掌握这些技术也能完成同样的功能.并且更专注于自己所要解决的问题。 数据挖掘与这两者之间的主要区别在于算法对大数据量的适应性,数据挖掘的算法必须面对记录为数10万条记录以上的数据集有很好的性能;周期性数据集更新数据挖掘需要考虑能对这些增量数据处理而不用从头计算一次:数据挖掘还需考虑如何处理数据集大于内存的问题及并行处理问题:另外,数据挖掘面向解决工程问题。