数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。数据分析与数据挖掘的思考的方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的IF else而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确,什么变量都要,先从模型的意义上选变量(大而全,多而精),之后根据变量的相关系程度、替代关系、重要性等几个方面去筛选,最后全扔到模型里面,最后从模型的参数和解读的意义来判断这种方式合不合理。大数据感觉并不是数据量大,也不是数据复杂,这些都可以用工具和技术去处理,而是它可以做到千人千面,而且是实时判断规则。例如定向广告的推送,就是大数据,它根据你以往的浏览行为,可以准确的给你推相关的信息,基本做到了你一个人就是一个数据库,而不是一条数据。但我们所作的数据分析更多是针对群体的,而非针对每个个人。所以大数据时代也显露出了各类问题,数据的隐私、数据杀熟、数据孤岛等,这也许就是我们目前看到大数据分析更看重的是技术、手段的原因。