大数据 数据分析 数据挖掘有什么区别

全部回答3
默认 最新
  • 1、大数据:大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。2、数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。3、数据挖掘:数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。4、了解更多,可点击查看阅读原文哦!!!
    0 点赞
  • 数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。数据分析与数据挖掘的思考的方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的IF else而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确,什么变量都要,先从模型的意义上选变量(大而全,多而精),之后根据变量的相关系程度、替代关系、重要性等几个方面去筛选,最后全扔到模型里面,最后从模型的参数和解读的意义来判断这种方式合不合理。大数据感觉并不是数据量大,也不是数据复杂,这些都可以用工具和技术去处理,而是它可以做到千人千面,而且是实时判断规则。例如定向广告的推送,就是大数据,它根据你以往的浏览行为,可以准确的给你推相关的信息,基本做到了你一个人就是一个数据库,而不是一条数据。但我们所作的数据分析更多是针对群体的,而非针对每个个人。所以大数据时代也显露出了各类问题,数据的隐私、数据杀熟、数据孤岛等,这也许就是我们目前看到大数据分析更看重的是技术、手段的原因。
    0 点赞
  • 去百度文库,查看完整内容>内容来自用户:天成信息大数据和数据分析区别   大数据是指用现有的计算机软硬件设施难以采集、存储、管理、分析和使用的超大规模的数据集。大数据具有规模大、种类杂、快速化、价值密度低等特点(4V特性)。大数据的“大”是一个相对概念,没有具体标准,如果一定要给一个标准,那幺10-100TB通常称为大数据的门槛。     数据分析是一个大的概念,理论上任何对数据进行计算、处理从而得出一些有意义的结论的过程,都叫数据分析。从数据本身的复杂程度、以及对数据进行处理的复杂度和深度来看,可以把数据分析分为以下4个层次:数据统计,OLAP,数据挖掘,大数据。     大数据分析和数据分析是有区别和联系的。这里重点关注两者的是技术要求、使用场景、业务范围等方面的区别和联系。重点要区分理论研究和实际应用两方面区别和联系。    第一:在分析方法上两者并没有本质不同    数据分析的核心工作是人对数据指标的分析、思考和解读,人脑所能承载的数据量是极其有限的。所以,无论是“传统数据分析”,还是“大数据分析”,均需要将原始数据按照分析思路进行统计处理,得到概要性的统计结果供人分析。两者在这个过程中是类似的,区别只是原始数据量大小所导致处理方式的不同。     第二:在对统计学知识的使用重心上两者存在较大的不同    传统数据分析”使用的知识主要围绕“能否通过少量的抽样数据来推测真实世界”的主题展开。“大
    0 点赞

没有更多内容了

返回顶部
产品求购 求购