传统意义的无线资源管理包括接入控制、切换、负载均衡、功率控制、信道分配等,而在未来异构网络中,无线资源管理的目标还包括为用户提供无处不在的服务和进行无缝切换,并提高无线资源的利用率。异构网络中无线资源管理是传统无线资源管理的一种扩充。异构网络中无线资源管理的研究引起了广泛的关注,比较典型的几个无线资源管理模型包括协同无线资源管理、Multi-access无线资源管理(Multi-access RRM,MRRM)和联合无线资源管理。下面分别对这三种无线资源管理方法进行具体的介绍。 3GPP在规范中提出了CRRM的概念,通过CRRM对WCDMA、WLAN和GSM/EDGE等多种RAT进行统一的管理。CRRM中两个主要技术是新发起呼叫的网络选择和漫游呼叫垂直切换的网络选择。在这里每个RAT需要执行呼叫允许接入控制、调度(Scheduling)、HHO和局部功率控制(Power Control)。CRRM结构框架如图2.3所示。每个RRM实体负责监测相应RAT的网络参数和状态信息,并将这些信息周期性发送到CRRM服务器,再由CRRM服务器处理每个网络汇报的数据,并进行分析和处理,最后将决策的结果反馈给每个RRM实体,由这些RRM实体来具体执行对应的决策。CRRM主要的优点是可以利用负载均衡(Load Balancing,LB)来降低阻塞率和提高无线资源的利用率;根据终端的业务类型为用户选择合适的网络,从而来改善网络的QoS管理功能。 Multi-access无线资源管理是基于三个主要的结构功能模块:集中式的MRRM、分布式的MRRM和终端MRRM,如图2.4所示。集中式的MRRM一般适用于紧耦合的融合异构网络结构。图2.5给出了集中式的MRRM架构,所谓集中式指的就是每个RAT都归一个集中的RRM控制实体来管理,这个集中的控制实体能够获得所管理区域内的所有RAT的流量、负荷以及阻塞状态等,能够起到对这些网络进行统一的管理。这种结构有一些缺点,例如两个相邻的RAT之间会产生边缘效应,还有不便于扩展,当集中式RRM管理的RATs太多时,难以管理,且效率不是很高。因此出现了分布式的MRRM架构。如图2.6所示给出了分布式的MRRM架构,分布式的MRRM没有一个不依赖于某一个特定的MRRM实体,相应的功能分散给地位对等的RRM实体。分布式管理可以将系统的目标分配给每个分布式的RRM实体,由它们分担管理和计算的功能,这样可以降低每个节点的计算复杂度。并且系统的可靠性增加了,不会像集中式的MRRM,一旦集中RRM控制实体发生故障,整个系统就发生瘫痪了。这种框架已经在3GPP规范中得到了应用,并应用到了WCDMA和GSM/EDGE构成的异构网络系统。基于终端的MRRM将MRRM功能和决策交由终端负责,但是这种方式还是需要网络端进行协助,例如每个网络实体需要将自身状态信息提供给每个移动终端,以便进行MRRM决策。 文献 提出了联合无线资源管理方案。该方案的核心概念是业务分离和多重连接。JRRM将业务分成基本部分和增强部分,前者由大覆盖范围的RAT来传送,例如UMTS。JRRM的目标是通过利用中心控制器来管理所有子网的容量,为不同RAT之间提供智能互联。JRRM框架与CRRM结构非常类似,但是JRRM并不仅仅局限于UMTS和GSM。此外,JRRM通过一些改变和附加特点弥补了CRRM方案。一种超紧耦合方式允许联合、管理网络与终端之间的业务流,因此联合无线资源规划和允许接入控制需要最优化频谱效率、处理不同的业务类型和QoS约束以及自适应的规划业务等。特别的是通过多重接入来利用业务分割来获得最优QoS,多重接入指的是一个终端可以同时接入到多个无线网络,从而可以将业务流分割成多个子业务流,分别通过不同的RAT来异步传送。如图2.7中所示,JRRM结构是基于不同RATs同时覆盖的假设,每个RAT需要保证用户流量接口(User Traffic Interface,IU)、监测功能、业务调度(Traffic Schedule,TRSCH)、负荷控制(Load Control,LODCL)、接入允许控制(Session Admission Control,SAC)等功能相互高效工作。业务估计模块(Traffic Estimation module,TREST)通知每个允许接入的会话或呼叫进行接入控制,去更新每个连接的优先级信息和接入允许决策。