硬盘阵列怎么做

全部回答2
默认 最新
  • 第一步 1备份好硬盘中的数据 2准备好一张带fdisk与format命令的windows 98启动盘[软盘或者带启动的98安装盘都行] 第二步 将两块硬盘的跳线设置为master,分别接上ide3、ide4口(它们由主板上的highpoint370芯片控制)顺序不考虑 第三步 对bios进行设置,打开ata raid controller。我的板子是进入integrated peripherals选项并开启ata100 raid ide controller 最后设置软驱或光驱作为首选项。 第四步 接下来的设置步骤是创建raid 0的核心内容。 1.系统bios设置完成以后重启电脑,开机检测时将不会再报告发现硬盘。 2.磁盘的管理将由highpoint 370芯片接管。 3.下面是非常关键的highpoint 370 bios设置,在highpoint 370磁盘扫描界面同时按下“ctrl”和“h”。 4.进入highpoint 370 bios设置界面后第一个要做的工作就是选择“create raid”创建raid。 5.在“array mode(阵列模式)”中进行raid模式选择,这里能够看到raid 0、raid 1、raid 0+1和span的选项 选择raid 0项。 6.raid模式选择完成会自动退出到上一级菜单进行“disk drives(磁盘驱动器)”选择 直接回车就行了。 7.下一项设置是条带单位大小,缺省值为64kb不用修改 8.接着是“start create(开始创建)”的选项,在你按下“y”之前,确认硬盘数据是不是备份好了 一旦开始创建raid,硬盘上的所有数据都会被清除。 9.创建完成以后是指定boot启动盘,任选一个吧。 按“esc”键退出,当然少不了按下“y”来确认一下。 第五步 再次重启电脑以后,看到“striping(raid 0)for array #0”字样了。这时候两块硬盘就被做成列阵了 就象对一块盘格式化一样 插入启动盘来格式化和分区 第六步 对于采用raid的电脑,操作系统的安装和普通情况下不一样, windows xp完成第一步“文件复制”重启以后,安装程序会以英文提示“按下f6安装scsi设备或raid磁盘”,这时候就要按下f6 出现安装选择,选择“s”安装raid控制芯片驱动 按下“s”键会提示插入raid芯片驱动盘。回车,安装程序自动搜索驱动盘上的程序,选择“winxp”那一个并回车。 接下来是正常的系统安装,和普通安装没有任何区别。 安装完毕 进入系统 raid 0 就安装好了
    0 点赞
  • 用硬RAID吧,这样会有比较好的性能,首先主板要支持RAID,多买几块硬盘,组建一个RAID,设置在BIOS设置里面进行,下面是几种RAID的方式,看哪种比较适合你 RAID 0 我们在前文中已经提到RAID分为几种不同的等级,其中,RAID 0是最简单的一种形式。RAID 0可以把多块硬盘连接在一起形成一个容量更大的存储设备。最简单的RAID 0技术只是提供更多的磁盘空间,不过我们也可以通过设置,使用RAID 0来提高磁盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,但是实现成本是最低的。 RAID 0最简单的实现方式就是把几块硬盘串联在一起创建一个大的卷集。磁盘之间的连接既可以使用硬件的形式通过智能磁盘控制器实现,也可以使用操作系统中的磁盘驱动程序以软件的方式实现,我们把4块磁盘组合在一起形成一个独立的逻辑驱动器,容量相当于任何任何一块单独硬盘的4倍。如图中彩色区域所示,数据被依次写入到各磁盘中。当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中。 这种设置方式只有一个好处,那就是可以增加磁盘的容量。至于速度,则与其中任何一块磁盘的速度相同,这是因为同一时间内只能对一块磁盘进行I/O操作。如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,无法继续使用。从这种意义上说,使用纯RAID 0方式的可靠性仅相当于单独使用一块硬盘的1/4(因为本例中RAID 0使用了4块硬盘)。 虽然我们无法改变RAID 0的可靠性问题,但是我们可以通过改变配置方式,提供系统的性能。与前文所述的顺序写入数据不同,我们可以通过创建带区集,在同一时间内向多块磁盘写入数据。系统向逻辑设备发出的I/O指令被转化为4项操作,其中的每一项操作都对应于一块硬盘。我们从图中可以清楚的看到通过建立带区集,原先顺序写入的数据被分散到所有的四块硬盘中同时进行读写。四块硬盘的并行操作使同一时间内磁盘读写的速度提升了4倍。 在创建带区集时,合理的选择带区的大小非常重要。如果带区过大,可能一块磁盘上的带区空间就可以满足大部分的I/O操作,使数据的读写仍然只局限在少数的一、两块硬盘上,不能充分的发挥出并行操作的优势。另一方面,如果带区过小,任何I/O指令都可能引发大量的读写操作,占用过多的控制器总线带宽。因此,在创建带区集时,我们应当根据实际应用的需要,慎重的选择带区的大小。 我们已经知道,带区集可以把数据均匀的分配到所有的磁盘上进行读写。如果我们把所有的硬盘都连接到一个控制器上的话,可能会带来潜在的危害。这是因为当我们频繁进行读写操作时,很容易使控制器或总线的负荷超载。为了避免出现上述问题,建议用户可以使用多个磁盘控制器。 RAID 1 虽然RAID 0可以提供更多的空间和更好的性能,但是整个系统是非常不可靠的,如果出现故障,无法进行任何补救。所以,RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。 RAID 1和RAID 0截然不同,其技术重点全部放在如何能够在不影响性能的情况下最大限度的保证系统的可靠性和可修复性上。RAID 1是所有RAID等级中实现成本最高的一种,尽管如此,人们还是选择RAID 1来保存那些关键性的重要数据。 RAID 1又被称为磁盘镜像,每一个磁盘都具有一个对应的镜像盘。对任何一个磁盘的数据写入都会被复制镜像盘中;系统可以从一组镜像盘中的任何一个磁盘读取数据。显然,磁盘镜像肯定会提高系统成本。因为我们所能使用的空间只是所有磁盘容量总和的一半。下图显示的是由4块硬盘组成的磁盘镜像,其中可以作为存储空间使用的仅为两块硬盘(画斜线的为镜像部分)。 RAID 1下,任何一块硬盘的故障都不会影响到系统的正常运行,而且只要能够保证任何一对镜像盘中至少有一块磁盘可以使用,RAID 1甚至可以在一半数量的硬盘出现问题时不间断的工作。当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据。 通常,我们把出现硬盘故障的RAID系统称为在降级模式下运行。虽然这时保存的数据仍然可以继续使用,但是RAID系统将不再可靠。如果剩余的镜像盘也出现问题,那么整个系统就会崩溃。因此,我们应当及时的更换损坏的硬盘,避免出现新的问题。 更换新盘之后,原有好盘中的数据必须被复制到新盘中。这一操作被称为同步镜像。同步镜像一般都需要很长时间,尤其是当损害的硬盘的容量很大时更是如此。在同步镜像的进行过程中,外界对数据的访问不会受到影响,但是由于复制数据需要占用一部分的带宽,所以可能会使整个系统的性能有所下降。 因为RAID 1主要是通过二次读写实现磁盘镜像,所以磁盘控制器的负载也相当大,尤其是在需要频繁写入数据的环境中。为了避免出现性能瓶颈,使用多个磁盘控制器就显得很有必要。使用两个磁盘控制器不仅可以改善性能,还可以进一步的提高数据的安全性和可用性。我们已经知道,RAID 1最多允许一半数量的硬盘出现故障,所以按照我们上图中的设置方式(原盘和镜像盘分别连接不同的磁盘控制),即使一个磁盘控制器出现问题,系统仍然可以使用另外一个磁盘控制器继续工作。这样,就可以把一些由于意外操作所带来的损害降低到最低程度。 RAID 0+1 单独使用RAID 1也会出现类似单独使用RAID 0那样的问题,即在同一时间内只能向一块磁盘写入数据,不能充分利用所有的资源。为了解决这一问题,我们可以在磁盘镜像中建立带区集。因为这种配置方式综合了带区集和镜像的优势,所以被称为RAID 0+1。 热插拔 一些面向高端应用的磁盘镜像系统都可以提供磁盘的热插拔功能。所谓热插拔功能,就是允许用户在不关闭系统,不切断电源的情况下取出和更换损害的硬盘。如果没有热插拔功能,即使磁盘损坏不会造成数据的丢失,用户仍然需要暂时关闭系统,以便能够对硬盘进行更换。现在,使用热插拔技术只要简单的打开连接开关或者转动手柄就可以直接取出硬盘,而系统仍然可以不间断的正常运行。 校验 RAID 3和RAID 5都分别使用了校验的概念提供容错能力。简单的说,我们可以把校验想象为一种二进制的校验和,一个可以告诉你其它所有字位是否正确的特殊位。 在数据通信领域,奇偶校验被用来确定数据是否被正确传送。例如,对于每一个字节,我们可以简单计算数字位1的个数,并在字节内加入附加校验位。在数据的接收方,如果数字位1的个数为奇数,而我们使用的又是奇数校验的话,则说明该字节是正确的。同样对偶数校验也是如此。然而,如果数字位1的个数和校验位的奇偶性不一致的话,则说明数据在传送过程中出现了错误。 RAID系统也采用了相似的校验方法,可以在磁盘系统中创建校验块,校验块中的每一位都用来对其它关联块中的所有对应位进行校验。 在数据通讯领域,虽然校验位可以告诉我们某个字节是否正确,但是无法告诉我们到底是哪一位出现了问题。这就是说我们可以检测错误,但是不能改正错误。对于RAID,这是远远不够的。固然错误的检测非常重要,但是如果不能对错误进行修复,我们就无法提高整个系统的可靠性。
    0 点赞

没有更多内容了

返回顶部
产品求购 求购