(1)由已知当A0A=110mm时,可得AC=300+80-110=270(mm),又AB=l=300mm,BC=r=80mm,∴cosθ=AC2+BC2?AB2 2AC?BC =2702+802?3002 2×270×80 =107 432 ;(2)设AC=xmm,若θ=0,则A0A=0mm;若θ=π,则A0A=2rmm,若0<θ<π时,在△ABC中,由余弦定理得:AB2=AC2+BC2-2AC?BCcosC,即x2-2(rcosθ)x-(l2-r2)=0,解得:x1=rcosθ+ (rcosθ)2+l2?r2 =rcosθ+ l2?r2sin2θ (mm),x2=rcosθ- (rcosθ)2+l2?r2 <0(不合题意,舍去),∴A0A=A0C-AC=l+r-rcosθ- l2?r2sin2θ (mm),∴当θ为任意角时,有A0A=l+r-rcosθ- l2?r2sin2θ (mm).