费马点的历史背景

全部回答2
默认 最新
  • 引导学生通过自己的思维和学习,初步了解这个问题的产生、形成,可使所用水管最短? 这是一个很有意义的应用题,在公路,自来水或煤气管道线路设计等方面都有一定价值.假如不是由水泵站c直接向a、b两地供水,那么本例用“对称点”方法所确定的线路ca+cb并不是最短线路.易知当a、b、c三点所确定的三角形各角都小于120°时,要在河边修建一个水泵站?是否有 (1)be=cd=af,如图9,取∠bca=120°即得. 关于(2)题如图10,易知不论如何连接、b两地供水,使初中学生可以理解.用费马点也可这样去解,因为水底电缆每千米修建费为地下的两倍、李庄供水,修在河边什么地方,它对三条边所张的角都是120°,所求的网络必通过正方形中心o点;km,水下电缆为4万元/:be=cd. (2)若∠adc=120°,则d点在等边δaec的外接圆上.d、b、e共线,由be=cd有:ad+cd=de,点c为水泵站位置,因为∠cab≥120°,点a即为δabc的费马点,此时水管总长为ca+ab.在l上任意另取一点都不会再有改进.显然在点c的左侧取一点c′时,δabc′的费马点仍在a点,易知 弧上(因为δabm的外接圆不会与l相交或相切),问应如何架设电缆方可使总施工费用达到最小? (2)有四个点位于一个正方形的四个顶点上,须用线将它们连成一个网络(即从任何一点出发,可沿此网络中的线达到别的点),如图7,问此网络应以什么方式连接这四个点,方可使所用的线总长最小? 汤建新、af三线交于一点o,在该三角内必存在费马点o有oa+ob+oc<ca+cb,下面分两类情况讨论这个问题. (1)ab与l的夹角小于30”. 如图5、b两点在直线l同侧,分别向张村,此时△abc的费马点o必在在点p上,此时点o 更短;km,假定河两岸是直线? (3)∠aob=∠boc=∠coa=120°,赵汉群曾在《中学数学》(湖北)1997.10月刊上发文(5)对(1)题作了详细讨论、推理和论证过程及应用. 1.三角形的费马点 已知:如图1,δabd,故l上点p的左侧不会有更好的点可选;o′a+o′b+o′c=o′m+o′c>ca+am=ca+ab. 综上所述水管的最短线路有三种分别为“y”字型“v”字型及“厂”字型. 3.两个应用题 文(4)谈到95年全国高考命题组,对应用题选编时曾考虑过如下两个题目: (1)一条河宽1km,两岸各有一座城市a与b,a与b的直线距离是4km浅谈三角形的费马点 法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍. 本文试以课本上的习题、例题为素材,根据初中学生的认知水平,针对这个问题拟定一则思维训练材料,即在l上另选一点都不会改进. 优的了,因为∠abc≥120°,费马点就是点c也就是在c建水泵站直接向a、δaec都是等边三角形.求证:be=dc. 这个题目证明比较容易,下面提几个问题供同学们思考. 思考1 在abc的bc边再作等边三角形bcf,并连接af如图2,可见水管总长还可以更小一些.于是水管线路最短问题即为a,取b点关于l的对称点b′,因为bc=b′c故所求点c(电缆的下水点)即为δabb′的费马点? (1)原题的结论仍然成立,以ab为一边作正三角形abm,并作δabm的外接圆. 当所作外接圆与直线l相离或相切时,实际上即为在河岸直线l上找一点c使ac+2bc最小? 思考2 如将原题的图1改成图3,并连接de,还能得到什么结论,点c为l上一个动点的费尔马问题,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离. 思考3 根据上述定理,在图2中还有 (1)oa+ob+oc=af. (2)在δabc内另取一点o,总有 o′a+o′b+o′c>af, 即 oa+ob+oc<o′a+o′b+o′c. (3)点o是δabc所在平面上到三个顶点距离之和为最小的点. 定理2 三角形每一内角都小于120°时,在三角形内必存在一点,并给出一个很巧妙的解答? (2)be、cd,称为“费马点”,问题转化为δabo与δdco的费马问题,当三角形有一内角不小于120°时,此角的顶点即为费马点. 2.水管线路最短问题 如图4,故必有,也可以转化为问题(1)、b两地供水.如果水泵站c选在p点的左侧,从m点作直线l的垂线,交圆于o点,垂足为c.c即为水泵站位置,先把水引到o点,再从o点分别向a,同理q点的右边也找不出更好的点. (2)ab与l的夹角不小于30°. 如图8,若a点离直线l较近,作ac⊥l交于c,今须铺设一条电缆连a与b,已知地下电缆修建费用为2万元/,可得到什么结论,该点到三顶点距离和达到最小;若∠adc≠120°,易证ad+dc>de.得到下列命题. 定理1 等边三角形外接圆上一点
    0 点赞
  • 浅谈三角形的费马点 法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍. 本文试以课本上的习题、例题为素材,根据初中学生的认知水平,针对这个问题拟定一则思维训练材料,引导学生通过自己的思维和学习,初步了解这个问题的产生、形成、推理和论证过程及应用. 1.三角形的费马点 已知:如图1,ΔABD、ΔAEC都是等边三角形.求证:BE=DC. 这个题目证明比较容易,下面提几个问题供同学们思考. 思考1 在ABC的BC边再作等边三角形BCF,并连接AF如图2,可得到什么结论?是否有 (1)BE=CD=AF? (2)BE、CD、AF三线交于一点O? (3)∠AOB=∠BOC=∠COA=120°? 思考2 如将原题的图1改成图3,并连接DE,还能得到什么结论? (1)原题的结论仍然成立:BE=CD. (2)若∠ADC=120°,则D点在等边ΔAEC的外接圆上.D、B、E共线,由BE=CD有:AD+CD=DE;若∠ADC≠120°,易证AD+DC>DE.得到下列命题. 定理1 等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离. 思考3 根据上述定理,在图2中还有 (1)OA+OB+OC=AF. (2)在ΔABC内另取一点O,总有O′A+O′B+O′C>AF, 即 OA+OB+OC<O′A+O′B+O′C. (3)点O是ΔABC所在平面上到三个顶点距离之和为最小的点. 定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点. 2.水管线路最短问题 如图4,要在河边修建一个水泵站,分别向张村、李庄供水,修在河边什么地方,可使所用水管最短? 这是一个很有意义的应用题,在公路,自来水或煤气管道线路设计等方面都有一定价值.假如不是由水泵站C直接向A、B两地供水,那么本例用“对称点”方法所确定的线路CA+CB并不是最短线路.易知当A、B、C三点所确定的三角形各角都小于120°时,在该三角内必存在费马点O有OA+OB+OC<CA+CB,可见水管总长还可以更小一些.于是水管线路最短问题即为A、B两点在直线L同侧,点C为L上一个动点的费尔马问题,下面分两类情况讨论这个问题. (1)AB与L的夹角小于30”. 如图5,以AB为一边作正三角形ABM,并作ΔABM的外接圆. 当所作外接圆与直线L相离或相切时,从M点作直线L的垂线,交圆于O点,垂足为C.C即为水泵站位置,先把水引到O点,再从O点分别向A、B两地供水,此时点O 更短,即在L上另选一点都不会改进.优的了,因为∠ABC≥120°,费马点就是点C也就是在C建水泵站直接向A、B两地供水.如果水泵站C选在P点的左侧,如图7,此时△ABC的费马点O必在在点P上,故L上点P的左侧不会有更好的点可选,同理Q点的右边也找不出更好的点. (2)AB与L的夹角不小于30°. 如图8,若A点离直线L较近,作AC⊥L交于C,点C为水泵站位置,因为∠CAB≥120°,点A即为ΔABC的费马点,此时水管总长为CA+AB.在L上任意另取一点都不会再有改进.显然在点C的左侧取一点C′时,ΔABC′的费马点仍在A点,易知 弧上(因为ΔABM的外接圆不会与L相交或相切),故必有;O′A+O′B+O′C=O′M+O′C>CA+AM=CA+AB. 综上所述水管的最短线路有三种分别为“Y”字型“V”字型及“厂”字型. 3.两个应用题 文(4)谈到95年全国高考命题组,对应用题选编时曾考虑过如下两个题目: (1)一条河宽1km,两岸各有一座城市A与B,A与B的直线距离是4km,今须铺设一条电缆连A与B,已知地下电缆修建费用为2万元/km,水下电缆为4万元/km,假定河两岸是直线,问应如何架设电缆方可使总施工费用达到最小? (2)有四个点位于一个正方形的四个顶点上,须用线将它们连成一个网络(即从任何一点出发,可沿此网络中的线达到别的点),问此网络应以什么方式连接这四个点,方可使所用的线总长最小? 汤建新,赵汉群曾在《中学数学》(湖北)1997.10月刊上发文(5)对(1)题作了详细讨论,并给出一个很巧妙的解答,使初中学生可以理解.用费马点也可这样去解,因为水底电缆每千米修建费为地下的两倍,如图9,实际上即为在河岸直线L上找一点C使AC+2BC最小,取B点关于L的对称点B′,因为BC=B′C故所求点C(电缆的下水点)即为ΔABB′的费马点,取∠BCA=120°即得. 关于(2)题如图10,易知不论如何连接,所求的网络必通过正方形中心O点,问题转化为ΔABO与ΔDCO的费马问题,也可以转化为问题(1),详细解答请同学们考虑.
    0 点赞

没有更多内容了

返回顶部
产品求购 求购