液力耦合器 fluid coupling 以液体为工作介质的一种非刚性联轴器,又称液力联轴器。液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。最后液体返回泵轮,形成周而复始的流动。液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速,使传递扭矩趋于零。液力耦合器的传动效率等于输出轴转速与输入轴转速之比。一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。它一般靠壳体自然散热,不需要外部冷却的供油系统。如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。 液力变矩器 fluid torque converter 以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之一。图为液力变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相联。动力机(内燃机、电动机等)带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。泵轮将输入轴的机械能传递给液体。高速液体推动涡轮旋转,将能量传给输出轴。液力变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩系数通常约2~6。变矩系数随输出转速的上升而下降。液力变矩器的输入轴与输出轴间靠液体联系,工作构件间没有刚性联接。液力变矩器的特点是:能消除冲击和振动,过载保护性能和起动性能好;输出轴的转速可大于或小于输入轴的转速,两轴的转速差随传递扭矩的大小而不同;有良好的自动变速性能,载荷增大时输出转速自动下降,反之自动上升;保证动力机有稳定的工作区,载荷的瞬态变化基本不会反映到动力机上。液力变矩器在额定工况附近效率较高,最高效率为85~92%。叶轮是液力变矩器的核心。它的型式和布置位置以及叶片的形状,对变矩器的性能有决定作用。有的液力变矩器有两个以上的涡轮、导轮或泵轮,借以获得不同的性能。最常见的是正转(输出轴和输入轴转向一致)、单级(只有一个涡轮)液力变矩器。兼有变矩器和耦合器性能特点的称为综合式液力变矩器,例如导轮可以固定、也可以随泵轮一起转动的液力变矩器。为使液力变矩器正常工作,避免产生气蚀和保证散热,需要有一定供油压力的辅助供油系统和冷却系统。 无极变速器能够使变速器可在起始力矩多种速比和终结力矩多种速比之间连续调整,最终自动选用最佳速比,结果使发动机始终处于最佳速比范围之内,无需再考虑工作性能或燃油经济性。发动机能控制维持变速器的输入速度,如变速器的输入速度由多种变化路面的速度牵引阻力功能所控制;且车辆加速时牵引动力不间断,使动力完全适应车辆的加速特性。不但具有良好的燃油经济性,同时还具有良好的乘坐舒适性.自动变速器和无级变速器在急加速时,均会降档,以更加充沛的扭矩为车提供强有力的驱动力,以便能在极短的时间超越其它车辆或者克服路面阻力的变化。 机械式无极变速器 变速时不需油门、离合器等配合;变速时为匀加(减)速运动,变速平稳,无突变过程;变速范围大,可把固定初速在次极任意大小。结构比自动档简单,造价低,用在汽车等交通工具上,可使操作简单、安全、节约燃油;用于机电设备,可实现自动控制。 现代的自动档汽车主要应用液力耦合器和液力变矩器来传递发动机动力,实现自动变速主要是通过多片行星齿轮装置以及多个在变速器内部的制动器和离合器实现的摩擦片与行星齿轮的分离和接合,这样可以达到不同的传动比,也就是不同的党委,就是自动变速,由于一般的自动变速器(除了cvt以外)还是通过液力耦合器和液力变矩器这个环节,所以存在搅液的功率损失,所以就会费油,而且自动变速器不能像手动那样可以强制放在某一档,和o/v还不太一样,此外,缺少驾驶乐趣,所以我还是不会选择自动档车型,呵呵