柴油机车的传动方式

全部回答3
默认 最新
  • 单缸柴油机要看带动什么负载,传动方式可以用皮带传动,也可以用轴传动,主要是看安装位置,空间,距离等等。
    0 点赞
  • 与蒸气引擎不同,柴油机车的内燃机需经传动方能把动力输出到其车轮上,当机车停下时,其引擎可继续运作。依照动力传动方式的不同,柴油机车又可分为电力传动、液力传动、和机械传动三大类。 电力传动柴油机车(Diesel-Electric),亦称柴油电力式机车、或柴电机车,是把机车上柴油引擎带动发电机转化成电力,再由牵引电动机带动车轮转动。可以说,电力传动柴油机车是自携发电机的电力机车。在最初几十年制造的柴电机车都使用调速简单的直流电动机来带动车轮,交流电动机的使用有增加趋势,因为交流牵引电动机比直流电动机结构简单,易于维护,功率更大,但是需要配搭技术要求和质量高的VVVF逆变器达到良好的调速性能。按照直流和交流的制式,电力传动又可再分为:直流电力传动:牵引发电机和电动机均为直流电机。交—直流电力传动:使用三相交流同步发电机,发出交流电经过整流器装置变为直流电,供应直流牵引电动机。交—直—交流电力传动:使用三相交流同步发电机,发出交流电通过整流器变为直流电,电路中恒定直流电压通过逆变器调节其振幅和频率,将直流电逆变成变频调压交流电,供给交流牵引电动机。制动(煞车)装置方面,所有电传动内燃机车都装有高效率的空气制动机,同时大部分也使用动态制动(电阻制动/dynamic brake),在这个装置下动能经由牵引电动机转换成电力,电力再由电阻转换成热能后经由散热装置散去。动态制动能在山岳地区路线减少制动装置使用及磨损,但在低速情况下则没有显著效果,仍需使用空气制动。在美国,部分在纽约行走的柴电机车装有第三轨配电设备。在市内设有第三轨的地方行走时可以从电网取电,以纯粹电力机车方式运作,在郊区未电气化的路段则使用柴油引擎发电。这种机车通常被称为双模式机车(dual-mode locomotive)。 液力传动柴油机车(Diesel-Hydraulic),亦称柴油液力式机车、或柴液机车,使用液力变矩器(torque-converter),又称液力变扭器,用液力把内燃机的动力传到车轮上。液力变矩器主要有三个浸在传动油的部分:离心式油泵,涡轮及中间固定导轮。离心式油泵和内燃机曲轴相连,当内燃机转动时,离心式油泵随着转动,把传动油泵向涡轮,涡轮被传动油带动而旋转,并带动导轮转动输出机械能,液力耦合器与轮轴用万向轴相连,令车轮转动。液力传动的内燃机车结构较电传动机车简洁,重量轻,不像电力传动机车同时需要发电机,整流柜/逆变器和电动机等部件才能运作。即在同样的机车重量下,液传机车的功率一般都比电传机车大。以中国的东方红3型(液传机车)和东风型(电传机车)为例,东方红3型重量为92吨,功率达1980kW;而东风型车重126吨,功率仅1500kW。而且液传机车不需要消耗电传机车电机设备所需要的大量铜金属,制造成本较低。另外,许多工矿企业使用液力传动内燃机车,因为电传动机车的发电机和直流牵引电机电刷会产生火花,容易引起粉尘或危险气体爆炸。一般来说,液力传动机车比电传动机车效率稍高。当液力机车起动和低速运行时,变扭器中的涡轮转速很低,传动油对涡轮叶片的压力就很大,从而满足机车起动时牵引力大的需求;当涡轮的转速随着机车运行速度提高而加快时,传动油对涡轮叶片的压力也逐渐减小,正好满足机车高速运行时对牵引力小的需求,但因此也有加速慢的问题。所以柴油机发出的大小不变的扭矩,经过变扭器就能变成满足列车牵引要求的机车牵引力。在特定的负载条件下,液传机车的功率传递效率比电传机车略高。全负载情况下,液传的效率稍高于电传;半负载情况下,液传效率会进一步提升,而电传效率会进一步下降。功率越小,液力传动的优势就越明显,功率越大液力传动效率越低,依靠提高泵轮转速推高功率使变扭器发出高热,造成能量流失,这时电力传动更有优势。而且液力传动柴油机车的功率难以提升,因为液力传动装置受到泵轮、变扭器箱体金属强度的限制,只能有限度承受并传递非常巨大的液压力。至2006年,德国福伊特公司才研制出世界上首台功率达5000马力的液传内燃机车Voith Maxima 40cc,但电传机车早在十几年前已达到同功率级别。早期的液传机车技术未成熟,故障率稍高。但液力变扭器传动装置本身没有磨耗零件,只要金属质量、精度达标,机车可靠性可以相当高,保养也更便捷。然而在同等功率下,液力传动的机车,耗油量要高出10~20%,经济性较差。在铁路发展方向为重载和高速的国家,如中国和北美洲,大部分的柴油机车都是采用电力传动,这是因为液传机车无法发展为单机大功率内燃机车。而在日本和欧洲,尤其是德国,以电力为主要牵引动力,客车普遍使用高速列车,内燃机车居于次要的位置,大多用于中速轻载或调车作业,对功率要求不高,而液传机车正拥有中低速牵引力较大的特点,所以这些国家的柴油机车主要为液力传动。 机械传动柴油机车(Diesel-mechanical)、像汽车的手动变速器一様用变速箱和离合器。但机械结构的离合器难以承受高功率,而且变速箱结构就必然十分复杂和庞大,以增加排档数提供相对平稳的变速性能,所以机械传动柴油机车功率通常很低,现时最高只有1500kW,传动效率低于液力传动和电力传动,所以机械传动多用于轻型轨道车。1960年代匈牙利也曾经生产过NC系列机械(齿轮)传动柴油动车组。
    0 点赞
  • 对于液力传动内燃机车,柴油机发出的动力传递到液力变速器的液压油中,液压油通过液力涡轮,液力变矩器和液力耦合器等原件将能量传递到车轮,变成驱动车轮的动力。大型柴油液力牵引机车广泛用于冶炼冶金、矿山采选工程、隧道工程、电力电厂调运机车、大型建材、化工、国防工程、大型土建施工工程等行业厂矿区内部有轨运输以及地方铁路、机务段等作为调动运输牵引设备;低速、大牵引工矿液力传动机车,尤其在柴电混合动力、地铁工程以及防爆机车领域;长大铁路隧道、地铁隧道、长大公路隧道,大型地下工程施工牵引运输设备,隧道牵引机车;港口、码头运输集装箱、码头移动特大型机械设备牵引;轨道起重机车,物资储运库转运材料、设备;铁路货运场移动转运物资、材料、设备,货场编组火车厢;大型发电车厂内调运车皮;大型重型机械设备厂转运大吨位大型零件和设备;工矿冶炼工程厂区轨道牵引机车结构紧凑重量相对较轻,相同重量的电传动牵引机车与液力传动牵引机车相比,液力传动内燃机车的功率更大,造价更低;柴油发动机发出的动力传递到液力变速器的液压油中,液压油通过液力涡轮、液力变矩器和液力耦合器等原件将能量传递到车轮,变成驱动车轮的动力。缺点是传动效率较低,油耗大,因为液体的流动是随意的,传递动力的过程中会因为流动的随意性损失一部分能量,而且液体在流动过程中自身也损失一部分动能,所以比电传动牵引机车效率低很多,一般来说电传动机车效率可达90%,而液力传动的机车只有83.3%,所以液力传动的机车经济性较差,也成为其保有量远不及电传动机车的重要原因,但电传动机车结构复杂,造价高。核心元件是液力传动箱中的液力变扭器,主要由泵轮、涡轮和导向轮组成。泵轮通过轴和齿轮与柴油机的曲轴相连,涡轮通过轴和齿轮与机车的动轮相连,导向轮固定在变扭器的外壳上,并不转动。当柴油机启动时,泵轮被带动高速旋转,泵轮叶片则带动工作油以很高的压力和流速冲击涡轮叶片,使涡轮与泵轮以相同的方向转动,再通过齿轮把柴油机的输出功率传递到机车的动轮上,从而使机车运行。液力传动的输入轴与输出轴之间只靠液体为工作介质联系,构件间不直接接触,是一种非刚性传动。液力传动的优点是:能吸收冲击和振动,过载保护性好,甚至在输出轴卡住时动力机仍能运转而不受损伤,带载荷启动容易,能实现自动变速和无级调速等,因此它能提高整个传动装置的动力性能。当大型柴油液力牵引机车起动和低速运行时,变扭器中的涡轮转速很低,工作油对涡轮叶片的压力就很大,从而满足机车起动时牵引力大的需求;当涡轮的转速随着机车运行速度的提高而加快时,工作油对涡轮叶片的压力也逐渐减小,正好满足大型柴油液力牵引机车高速运行时对牵引力要小的需求。由此可见,柴油机发出的大小不变的扭矩,经过变扭器就能变成满足列车牵引要求的机车牵引力。当大型柴油液力牵引机车需要惰力运行或进行制动时,只要将变扭器中的工作油排出到油箱,使泵轮和涡轮之间失去联系,柴油机的功率就不会传给机车的动轮了。
    0 点赞

没有更多内容了

返回顶部
产品求购 求购