图(1)望远镜视距丝如图(1)所示,欲测定A,B两点间的水平距离D及高差h,可在A点安置水准仪,B点立视距尺,设望远镜视线水平,瞄准B点视距尺,此时视线与视距尺垂直。若尺上M,N点成像在十字丝分划板上的两根视距丝m,n处,那末尺上MN的长度可由上,下视距丝读数之差求得。上,下丝读数之差称为视距间隔或尺间隔。
图(1)中l为视距间隔,p为上、下视距丝的间距,f为物镜焦距,δ为物镜至仪器中心的距离。
由相似三角形m'n'F与MNF可得:d:f=l:p ,即:d=fl /p,由图看出D=d+f+δ ,带入得:D=fl/p+f+δ,令f/p=K,f+δ=C,得D=Kl+C.(1)
图(1)视线水平的视距测量式中K、C——视距乘常数和视距加常数。现代常用的内对光望远镜的视距常数,设计时已使K=100,C接近于零.则公式(1)可化简为D=Kl=100×l。(2)
而高差h=i-v, (3)
i—仪器高,是桩顶到仪器横轴中心的高度;v—瞄准高,是十字丝中丝在尺上的读数。
图(3)视线倾斜时的视距计算在地面起伏较大的地区进行视距测量时,必须使视线倾斜才能读取视距间隔,如图(3)。由于视线不垂直于视距尺,故不能直接应用上述公式。如果能将视距间隔MN换算为与视线垂直的视距间隔M'N',这样就可按公式(2)计算视距,也就是图(3)斜距D’,再根据D'和竖直角α算出水平距离D及高差h。因此解决这个问题的关键在于求出MN与与M'N'之间的关系。
图中φ角很小,约为34',故可把角MM'E和角NN'E 近似地视为直角,容易计算得l’=M'N'=MNcosα=lcosα,则D'=Klcosα。(4)
容易求得水平距离D=Klcosα*cosα,(5)
高差h=D*tanα+i-v 。 (6)
其实视线水平的时候α为0°,sin0°=0,cos0°=1,带入(4)、(5)、(6)就可得到(2)、(3)式。其中视线水平的时候视距等于水平距离。
施测时,如图(3)所示,安置仪器于A点,量出仪器高i,转动照准部瞄准B点视距尺,分别读取上、下、中三丝的读数M、N、V,计算视距间隔l=M-N。再使竖盘指标水准管气泡居中(如为竖盘指标自动补偿装置的经纬仪则无此项操作),读取竖盘读数,并计算竖直角α。然后按公式(4)、(5)、(6)用计算器计算出视距、水平距离和高差。
读数误差用视距丝在视距尺上读数的误差,与尺子最小分划的宽度、水平距离的远近和望远镜放大倍率等因素有关,因此读数误差的大小,视使用的仪器,作业条件而定。
垂直折光影响视距尺不同部分的光线是通过不同密度的空气层到达望远镜的,越接近地面的光线受折光影响越显著。经验证明,当视线接近地面在视距尺上读数时,垂直折光引起的误差较大,并且这种误差与距离的平方成比例地增加。
视距尺倾斜所引起的误差视距尺倾斜误差的影响与竖直角有关,尺身倾斜对视距精度的影响很大。
(1)为减少垂直折光的影响,观测时应尽可能使视线离地面1m以上,
(2)作业时,要将视距尺竖直,并尽量采用带有水准器的视距尺;
(3)要严格测定视距常数,扩值应在100±0.1之内,否则应加以改正;
(4)视距尺一般应是厘米刻划的整体尺。如果使用塔尺应注意检查各节尺的接头是否准确,
(5)要在成像稳定的情况下进行观测。