1)、齿轮单项几何形状误差测量技术
它采用坐标式几何解析测量法,将齿轮作为一个具有复杂形状的几何实体,在所建立的测量坐标系(直角坐标系、极坐标系或圆柱坐标系)上,按照设计几何参数对齿轮齿面的几何形状偏差进行测量。测量方式主要有两种:离散坐标点测量方式和连续几何轨迹点扫描(如展成)测量方式。所测得的齿轮误差是被测齿轮齿面上被测点的实际位置坐标(实际轨迹或形状)和按设计参数所建立的理想齿轮齿面上相应点的理论位置坐标(理论轨迹或形状)之间的差异,通常也就是和几何坐标式齿轮测量仪器对应测量运动所形成的测量轨迹之间的差异。测量的误差项目是齿轮的单项几何偏差,以齿廓、齿向和齿距等三项基本偏差为主。由于坐标测量技术、传感器技术、计算机技术的发展,尤其是数据处理软件功能的增强,三维齿面形貌偏差、分解齿轮单项几何偏差和频谱分析等误差项目的测量得到了推广。单项几何偏差测量的优点是便于对齿轮(尤其是首件)加工质量进行分析和诊断、对机床加工工艺参数进行再调整;仪器可借助于样板进行校正,实现基准的传递。
2)、齿轮综合误差测量技术
它采用啮合滚动式综合测量法,把齿轮作为一个回转运动的传动元件,在理论安装中心距下,和测量齿轮啮合滚动,测量其综合偏差。综合测量又分为齿轮单面啮合测量,用以检测齿轮的切向综合偏差和单齿切向综合偏差;以及齿轮双面啮合测量,用以检测齿轮的径向综合偏差和单齿径向综合偏差。为了更有效地发挥齿轮双面啮合测量技术的质量监控作用,增加了偏差的频谱分析测量项目;还从径向综合偏差中分解出径向综合螺旋角偏差和径向综合齿向锥度偏差。这是齿轮径向综合测量技术中的一个新发展。综合运动偏差测量的优点是测量速度快,适合批量产品的质量终检,便于对齿轮加工工艺过程进行及时监控。仪器可借助于标准元件(如标准齿轮)进行校验,实现基准的传递。上述两项测量技术基于传统的齿轮精度理论,然而随着对齿轮质量检测要求的不断增加和提高,这些传统的齿轮测量技术也在不断细化、丰富、更新、提高。
3)、齿轮整体误差测量技术
它所基于的齿轮整体误差理论,是由我国机床工具行业、尤其是成都工具研究所的科研技术人员共同努力创建和不断完善的一种新型齿轮测量理论。把齿轮作为一个用于实现传动功能的几何实体,或采用坐标式几何解析法对其单项几何精度进行测量,并按齿轮啮合传动顺序和位置,集成为一条“静态”齿轮整体误差曲线;或按单面啮合综合测量方式,使用特殊测量齿轮,采用滚动点扫描测量法对其进行测量,得到齿轮“运动”整体误差曲线。上述两种齿轮整体误差曲线,经过运算和数据处理,都可以得到齿轮综合运动偏差、各单项几何偏差、三维齿面形貌偏差,以及接触区状态,从而能更全面、准确的评定齿轮质量和齿轮加工工艺的分析和诊断。齿轮整体误差测量技术是对传统齿轮测量技术的继承和发展。尤其是采用单面啮合、滚动点扫描测量的齿轮整体误差测量技术更具有测量信息丰富、测量速度快、测量精度更接近使用状态的特点,特别适合批量产品齿轮精度的检测与质量的控制。在汽车齿轮要求100%全部检测的态势下,这种由我国首先开发出来的齿轮整体误差测量技术得到了重视和推广,其中,成都工具研究所开发的锥齿轮整体误差测量技术曾于90年代转让给德国KLINGELNBERG公司。德国FRENCO公司推向市场的齿轮单面啮合滚动点扫描测量仪器,采用了完全类同的技术。
当前齿轮制造业的一个发展趋势,是将齿轮测量技术和齿轮设计、加工制造进行集成,实现齿轮制造信息的融合及CAD/CAM/CAT的集成,从而构建一个先进的齿轮闭环制造系统(由于通常由数字化信息来实现,可称为数字化闭环制造系统)。美国GLEASON和德国KLINGELNBERG开发的锥齿轮闭环制造技术和系统是个典型实例。
此外,在仪器测量形态和检测系统方面,现代齿轮测量技术还有如下的进展。
4)、齿轮在机测量技术
该技术有了较快的发展,是一个重要发展趋势。直接将齿轮测量装置集成于齿轮加工机床,齿轮试切或加工后不用拆卸,立即在机床上进行在机测量,根据测量结果对机床(或滚轮)参数及时调整修正(主要针对磨齿)。这对于成形磨齿加工和大齿轮磨齿加工而言,在提高生产效率、降低成本方面,尤其具有重要意义。德国KAPP厂的数控磨齿机就是一个典型代表。CNC齿轮加工机床的迅速发展,为推动齿轮在机测量技术的应用和发展提供了可靠的工作平台。
由于对大批量生产的汽车轿车齿轮质量要求的提高,齿轮在线测量分选技术的应用已是必不可少。上海汽车齿轮厂首次从美国ITW公司引进了该项技术和相应仪器装备,取得了预期效果,据称还将陆续购进该类检测仪器。
5)、齿轮激光测量技术
通常是指在齿轮的几何尺寸和形状位置精度的测量中,采用了激光技术,包括采用激光测长系统(如采用双频激光干涉仪作为齿轮测量仪器的长度基准或传感器)、激光测量头系统(如采用非接触点反射式激光测量头作为齿轮误差的检测传感器)、以及激光全息式齿轮测量系统(如采用激光全息技术对齿轮的齿面几何形状误差进行测量的系统)等。由于激光是长度溯源基准,不少高精度齿轮计量系统或齿轮测量基准仪器,采用激光测量系统作为其长度坐标测量系统。美国FELLOWS厂70年代开发的MICROLOG60就是一个实例。加拿大温莎精密测量仪器厂在80年代初生产的齿轮测量仪器就采用了非接触点反射式激光测量头,可用于测量塑料制成的软齿面齿轮。齿轮激光测量技术在日本倍受重视,并逐步完善成为产品推向市场。日本AMTEC公司的G3齿轮测量系统,采用的是CONO激光测量头,齿轮回转,测头位置相应变化,测出齿轮的截面形状。大阪精机开发的激光齿轮测量仪,采用激光全息技术,用光干涉法对被测齿轮的全齿面形状进行精度测量。
为了正确测量和评定产品质量,齿轮测量仪器通常应按照我国国家标准GB/T10095-2001(等同于ISO1328:1997)的渐开线圆柱齿轮精度标准所规定的精度项目、精度评定方法以及规定的公差,对产品齿轮进行快速、高效、可靠的测量。由于市场(如汽车行业)对齿轮测量不断提出新的更高要求,因此齿轮测量精度项目也应不断有所发展,齿轮测量仪器也应有所创新,使测量功能不断增强,以满足新的需求。
齿轮测量仪器通常由仪器主机、坐标或位移传感器、测头装置、测量拖板数控驱动系统、测量系统电气装置与接口,以及计算机等主要部分组成。随着关键精密零部件生产专业化、标准化、模块化,尤其是信息技术、计算机技术、精密机械制造技术以及精密测量技术的发展,推动了齿轮测量仪器的研制与开发。新的控制软件和测量软件的开发显得更为重要。
从上世纪80年代开始,齿轮测量中心的开发受到众多齿轮测量仪器制造商的重视;90年代逐步形成了系列化产品推向市场。CNC齿轮测量中心是信息技术、计算机技术和数控技术在齿轮测量仪器上集成应用的结晶,是坐标式齿轮测量仪器发展中的一个里程碑。该仪器实质上是含有一个回转角坐标的四坐标测量机——圆柱坐标测量机,主要用于齿轮单项几何精度的检测,也可用于(静态)齿轮整体误差的测量。
德国KLINGELNBERG的P系列齿轮测量中心,其特点是采用了专利的三维数字式高精度光栅测量头(使用了HEINDENHAIN的超高精度光栅);性能稳定的优质铸铁床身,高性能直线电机驱动系统;高精度滚珠轴系和密珠滚动导轨。仪器精度达到德国标准1级。据报道该厂生产并经精化的一台P65齿轮测量中心,被英国国家齿轮计量实验室选定,作为英国齿轮精度传递及标定的基准仪器。美国M&M的齿轮测量中心,其三维高精度电感测量头;花岗石基座;精密气浮轴系以及精密直线滚动体结构导轨,成为该仪器的特色(也采用了直线电机驱动),仪器测量不确定度为2μm。德国MAHR的GMX275采用的模拟量测量头,可选择扫描或单点采样方式,可以按0.1°间距转动,使测头的测尖能处于被测齿面的法面上,仪器测量不确定度在测量空间内为(2.3μm+L/200)。齿轮测量中心除了能测量圆柱渐开线齿轮,还能测量齿轮滚刀,插齿刀,剃齿刀等齿轮刀具,以及蜗杆、蜗轮、凸轮轴等复杂型面的回转体零件。国外齿轮测量中心厂商,大多还开发了适用于不同制式锥齿轮的测量软件和锥齿轮加工机床的参数修正软件,这有益于加快锥齿轮的首件试切。通过接口或网络的信息集成,将测量机、锥齿轮设计及锥齿轮加工机床连接一起,构建成锥齿轮闭环制造系统——将试切锥齿轮几何形状的测量信息,转换成相应机床参数的调整信息后反馈到机床,实现锥齿轮加工的CAD/CAM/CAT,使锥齿轮的“零废品”制造成为可能(可惜还未见国内应用的相关报道);选用相关软件,还能用于反求工程对工件参数进行测定。高精度和一机多能的特点,使齿轮测量中心更适合于工厂计量站使用。
日本的齿轮测量仪器制造商,在我国市场经过十年的沉寂后近亮相频繁。大阪精机在GC-HP系列齿轮测量仪器的基础上,开发出CNC电子创成式的CLP系列齿轮测量仪器。特别值得一提的是在国内参展亮相的东京技术仪器公司(Tokyo Technical Instruments Inc.)。在2003年底上海中国国际齿轮传动、制造技术及装备展览会上该厂首次展出TTI-300E型CNC齿轮检测仪,据称其质量较小的测头部件能单独在径向运动,便于快速测量齿轮齿距偏差。密珠轴系的主轴回转精度可达0.03μm,仪器测量重复性达到0.5μm。除了能对渐开线齿轮高精度测量外,该仪器还能对齿轮刀具(如滚刀、剃齿刀、插齿刀)以及蜗轮蜗杆进行测量。该公司产品在中国已售出30余台(主要集中在台资企业)。
国产CNC齿轮测量中心有了长足的发展,哈尔滨量具刃具厂、哈尔滨精达公司都先后成功开发出了系列产品。哈量的3903A齿轮测量中心,经过几年努力,仪器精度和测量速度据称已达到或接近KLINGELNBERG公司产品的先进水平。精达公司作为后起之秀,发展引人瞩目,其JD、JDS系列齿轮测量中心,在国内产品中销量最多。国产齿轮测量中心的质量和性能不断提高,已经具有和国外产品竞争的能力。不过在仪器精度、稳定性,尤其在测量软件(如弧锥齿轮的测量软件)、仪器故障诊断功能等方面,和国外还有一定差距。令人欣慰的是国内齿轮量仪制造商已有共识,已联合高校院所协同攻关努力缩小差距;随着性价比的迅速提高,参与市场竞争能力的增强,国产齿轮测量中心的发展前景看好,在国内市场所占比重将会越来越大。
齿轮单面啮合滚动点扫描测量仪
1、这类仪器在我国曾得到大力开发与生产,特别适合摩托车汽车齿轮批量生产现场的质量检测和生产工艺监控。成都工具研究所研制的CNC蜗杆式齿轮整体误差测量仪是一个典型实例,至今已在国内市场销售200余台,少量销往国外。它的特点是采用跳牙磨薄测量蜗杆与被测齿轮啮合,对齿轮齿面进行滚动点扫描测量。测量信息丰富,测量效率高。德国FRENCO公司推向市场的URM齿轮误差滚动扫描测量仪的测量原理完全类同于我国齿轮整体误差测量技术。该仪器可称为平行轴齿轮式齿轮整体误差测量仪,它采用高精度圆光栅作为角度传感器,特殊测量齿轮为测量元件,测量基本单元是测量齿轮上特制的测量棱线,分别为齿廓测量棱线和齿向(螺旋线)测量棱线。测量仪器的不确定度为3.5~4.5μm,测量重复性为2~3μm。测量时间1~2分钟,测量齿轮使用寿命约20万次。该产品已在德国福特汽车厂、大众汽车厂得到应用。成都工具研究所生产的CSZ500A、B型锥齿轮整体误差测量仪,是滚动点扫描测量技术在锥齿轮测量上的应用范例。测量锥齿轮的齿廓、齿向测量棱线的制作采用了自行开发的专利技术,仪器测量重复性可高达1~2μm,可测量锥齿轮的齿形、齿向、齿距偏差,齿面形貌偏差,切向综合偏差以及接触区。测量时间取决于大小锥齿轮齿数,通常为5~10分钟。
2、齿轮双面啮合检查仪
由于计算机、精密光栅传感器以及数控技术的应用,传统的齿轮双面啮合检查仪经过技术改造提升,整体水平有了质的改变,分析功能增强。哈尔滨量具刃具厂的智能双面啮合齿轮测量仪配备了笔记本电脑、长、圆光栅传感器、直流伺服电机和单片机数据采集,能对齿轮的径向综合偏差、一齿径向综合偏差、径向跳动等进行测量外,还能对毛刺、划伤、磕碰等缺陷进行判定。随着信息产业的发展,信息、办公机器以及照相机、玩具行业等用小模数齿轮(尤其是塑料齿轮)产量大增,质量要求也越来越高,小型齿轮双面啮合检查仪市场需求相应增加。2003年上海展览会上就展出了日本东京技术仪器和大阪精机的齿轮双面啮合检查仪。据东京技术仪器公司介绍,他们的TF-40NC是世界上第一台CNC齿轮双面啮合检查仪,其特点除了自动校零点、显示最大、最小和中心距平均值外,还能对基准(测量)齿轮的径向振摆进行自动补偿。除了MARPOSS的M62系列、大阪精机的GTR-PC、北井产业的KGT等产品外,我国的哈尔滨精达测量仪器有限公司也生产用于工位检测、具有计算机数据处理功能的齿轮双面啮合检查仪。
3、齿轮单面啮合检查仪
齿轮单面啮合检查仪又称为齿轮副传动精度检查仪或齿轮滚动检验机。典型实例是美国GLEASON公司的凤凰HCT500、德国KLINGELNBERG公司的GKC60 CNC锥齿轮滚动检验机。它装有高精度圆光栅,可以测量锥齿轮、圆柱齿轮副的传动精度——切向综合偏差,以及加载加速时的三维结构噪音分析、齿面接触斑点,用以评定传动副配对质量。我国原内江机床厂与重庆大学合作,成功研制出国产CNC锥齿轮滚动检验机,为赶超国外先进水平做出了贡献。小模数齿轮刀具制造商日本小笠原开发的MEATA-3型齿轮副传动精度检测仪,可以测量蜗杆蜗轮副、内外直/斜圆柱齿轮副、锥齿轮副、端面齿轮副等的传动误差,仪器分辨率为1角秒。
这类仪器主要应用于批量生产汽车轿车齿轮质量的最终检测,以保证齿轮变速箱的装配总成质量。由英国MOORE公司制造、美国ITW出产的齿轮在线自动分选机,实质上是一种改型的齿轮双面啮合在线检测分选机。除了能测量齿轮径向综合偏差、齿厚、齿轮加工毛刺及磕碰缺陷以外,由于配备了特殊的二维齿向测量机构,仪器还能测量双啮齿向偏差和双啮齿向锥度偏差等齿轮误差。该仪器适用于车间现场,能满足批量生产汽车齿轮100%的在线检测和自动分选的要求。该机测量速度快,每小时可测300~600个齿轮;使用不同的工装夹具,可分别对内、外齿轮,盘、轴齿轮进行测量;配有计算机数据处理系统和SPC统计分析软件,能对齿轮加工过程和工艺状况进行监测和预报;此外,它还具有仪器自身故障自动诊断功能。仪器重复性精度指标为:齿厚4μm,径跳3μm,齿向4μm,毛刺7μm。据称美国、德国的汽车制造厂都配备了类似仪器,以对齿轮质量和加工进行有效监控。大阪精机的AG系列齿轮自动分选机也在日本得到了很好的应用。
有关激光齿轮测量仪,日本报道较多。大阪精机开发用于基准传递、渐开线样板检测的CNC高精度齿轮测量仪,采用了高精度气浮主轴,气浮导轨,高精度长、圆编码器的同时,还采用了激光测长系统进行齿面精度检测。据报道仪器测量精度(重复精度)0.2~0.3μm。日本AMTEC公司的G3-SYSTEM 50非接触式齿轮测量仪采用了激光全息技术,实现了精确、高速测量。该仪器是一台由伺服电机驱动X、Y、Z、C轴运动的四轴(圆柱)坐标测量机。仪器配置了CONOPROBE激光全息测量头,当其物镜为HD25mm时,测头的绝对精度<1μm,重复性1σ<0.2μm,工作区域为0.65mm。该仪器可测量渐开线直、斜齿轮和花键、螺纹等,今后还将可以测量蜗杆、伞齿轮等。齿轮模数小至0.1mm,直径1~50mm,齿宽0.1~100mm,齿数4~200。由于采用激光非接触测量方式,仪器可以测量齿面上非渐开线齿根部分几何形状,专门开发的仿真软件可以模拟求得被测齿轮与其配对齿轮啮合时的传动误差,进行相应的FFT频谱分析;所测数据和分析数据还可通过LAN共享。
日本松下电器产业开发了采用原子力测头的超精密三坐标测量机,精度为0.01μm。用它测量齿轮时,由于测头只能沿垂直方向运动,所测齿轮受到一定限制。但是在测量限定齿数的实物样板时,测量精度可达到纳米级。测量样板所用测针的顶端曲率半径为2μm,因而可以测量齿面粗糙度。随着我国齿轮制造业的快速发展,随着渐开线圆柱齿轮精度国家标准GB/T10095-2001(等同于国际标准ISO1328:1997)的公布、宣传和贯彻,我国齿轮测量技术和齿轮测量仪器的发展方向更明,步伐更快。齿轮测量技术已成为先进齿轮制造技术中不可或缺的一个重要组成部分。随着齿轮质量要求的不断提高,新的齿轮精度评定指标的出现将推动齿轮精度标准的不断发展,齿轮测量技术和齿轮测量仪器也将不断发展。中国齿轮专业协会在组织、引导我国齿轮制造业、提高行业整体齿轮制造技术和质量方面,做出了卓有成效的努力;中国仪器仪表学会机械量测试仪器分会对于齿轮测量仪器的发展,给予了关注和支持。因此,我们有理由相信我国齿轮测量仪器制造业必将实现新的振兴。