氢能

氢能

目录导航

氢能

化学元素氢(H——Hydrogen),在元素周期表中位于第一位,它是所有原子中最小的。众所周知,氢分子与氧分子化合成水,氢通常的单质形态是氢气(H2),它是无色无味,极易燃烧的双原子的气体,氢气是密度最小的气体。在标准状况(0摄氏度和一个大气压)下,每升氢气只有0.0899克重——仅相当于同体积空气质量的二十九分之二。氢是宇宙中最常见的元素,氢及其同位素占到了太阳总质量的84%,宇宙质量的75%都是氢。氢广泛存在于自然界。在全球清洁能源转型的大背景下,氢能的无碳属性尤其突出,被视为是21世纪的“终极能源”。据世界氢能协会预计,到2050年全球环境20%的二氧化碳的减排要靠氢气来完成。[1]

氢具有高挥发性、高能量,是能源载体和燃料,同时氢在工业生产中也有广泛应用。现在工业每年用氢量为5500亿立方米,氢气与其它物质一起用来制造氨水和化肥,同时也应用到汽油精炼工艺、玻璃磨光、黄金焊接、气象气球探测及食品工业中。而液态氢可以作为火箭燃料。

氢能的主要优点有:燃烧热值高,燃烧同等质量的氢产生的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。燃烧的产物是水,是世界上最干净的能源。资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源,演绎了自然物质循环利用、持续发展的经典过程。

氢能简介

氢能氢能氢能是由氢元素在物理与化学变化过程中释放的能量。氢气和氧气可以通过燃烧产生热能,也可以通过燃料电池转化成电能。氢气不仅来源广泛,还具有导热良好、清洁无毒和单位质量热量高等优点,相同质量下所含热量约是汽油的3倍,是石油化工重要原料和航天火箭动力燃料。随着应对气候变化、实现碳中和的呼声日益高涨,氢能在改变人类能源体系方面被寄予厚望。

氢能之所以备受青睐,不仅在于其释放过程中的零碳排放,还在于氢气可作为储能载体,弥补可再生能源波动性、间歇性等短板,促进后者的大规模发展。比如,德国政府正在推动的“电力转化气体”技术,通过制取氢气来存储不能及时利用的风电、太阳能发电等清洁电力,并将氢气长距离输运以进一步有效利用。除了气态,氢气还能以液态或固态氢化物出现,具有多种储运方式。作为难得的“耦合剂”型能源,氢能既可实现电力和氢气之间的灵活转化,又能搭建“桥梁”实现电、热、冷乃至固体、气体、液体燃料的互联互通,构建更加清洁高效的能源体系。[2]

特点

氢位于元素周期表之首,它的原子序数为1,在常温常压下为气态,在超低温高压下又可成为液态。作为能源,氢有以下特点:

(l)所有元素中,氢重量最轻。在标准状态下,它的密度为0.0899g/l;在-252.7°C时,可成为液体,若将压力增大到数百个大气压,液氢就可变为固体氢。

(2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体。

(3)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。

(4)除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351kJ/kg,是汽油发热值的3倍。

(5)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。

(6)氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氨气外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氨气经过适当处理也不会污染环境,而且燃烧生成的水还可继续制氢,反复循环使用。

(7)氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造现在的内燃机稍加改装即可使用。

(8)氢可以以气态、液态或固态的氢化物出现,能适应贮运及各种应用环境的不同要求。

由以上特点可以看出氢是一种理想的新的含能体能源。目前液氢已广泛用作航天动力的燃料,但氢能的大规模的商业应用还有待解决以下关键问题:

廉价的制氢技术:因为氢是一种二次能源,它的制取不但需要消耗大量的能量,而且目前制氢效率很低,因此寻求大规模的廉价的制氢技术是各国科学家共同关心的问题。

安全可靠的贮氢和输氢方法:由于氢易气化、着火、爆炸,因此如何妥善解决氢能的贮存和运输问题也就成为开发氢能的关键。

许多科学家认为,氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。氢能是一种二次能源,因为它是通过一定的方法利用其它能源制取的,而不象煤、石油和天然气等可以直接从地下开采。在自然界中,氢易和氧结合成水,必须用电分解的方法把氢从水中分离出来。如果用煤、石油和天然气等燃烧所产生的热转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等于把无穷无尽的、分散的太阳能转变成了高度集中的干净能源了,其意义十分重大。目前利用太阳能分解水制氢的方法有太阳能热分解水制氢、太阳能发电电解水制氢、阳光催化光解水制氢、太阳能生物制氢等等。利用太阳能制氢有重大的现实意义,但这却是一个十分困难的研究课题,有大量的理论问题和工程技术问题要解决,然而世界各国都十分重视,投入不少的人力、财力、物力,并且也已取得了多方面的进展。因此在以后,以太阳能制得的氢能,将成为人类普遍使用的一种优质、干净的燃料。

前景

氢是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,因此氢能被称为人类的终极能源。水是氢的大“仓库”,如把海水中的氢全部提取出来,将是地球上所有化石燃料热量的9000 倍。氢的燃烧效率非常高,只要在汽油中加入4% 的氢气,就可使内燃机节油40%。美国政府已明确提出氢计划,宣布今后4年政府将拨款17亿美元支持氢能开发。美国计划到2040年美国每天将减少使用1100万桶石油,这个数字正是现在美国每天的石油进口量。

氢能 【hydrogen energy】 通过氢气和氧气反应所产生的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%。由于氢气必须从水、化石燃料等含氢物质中制得,因此是二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。全球对氢能的研发仍处于实验阶段。

行业发展

氢能被视为21世纪最具发展潜力的清洁能源,人类对氢能应用自200年前就产生了兴趣,到20世纪70年代以来,世界上许多国家和地区就广泛开展了氢能研究。

早在1970年,美国通用汽车公司的技术研究中心就提出了“氢经济”的概念。1976年美国斯坦福研究院就开展了氢经济的可行性研究。20世纪90年代中期以来多种因素的汇合增加了氢能经济的吸引力。这些因素包括:持久的城市空气污染、对较低或零废气排放的交通工具的需求、减少对外国石油进口的需要、CO2排放和全球气候变化、储存可再生电能供应的需求等。氢能作为一种清洁、高效、安全、可持续的新能源,被视为21世纪最具发展潜力的清洁能源,是人类的战略能源发展方向。世界各国如冰岛、中国、德国、日本和美国等不同的国家之间在氢能交通工具的商业化的方面已经出现了激烈的竞争。虽然其它利用形式是可能的(例如取暖、烹饪、发电、航行器、机车),但氢能在小汽车、卡车、公共汽车、出租车、摩托车和商业船上的应用已经成为焦点。

中国氢能发展预测中国氢能发展预测中国对氢能的研究与发展可以追溯到20世纪60年代初,中国科学家为发展本国的航天事业,对作为火箭燃料的液氢的生产、H2/O2燃料电池的研制与开发进行了大量而有效的工作。将氢作为能源载体和新的能源系统进行开发,则是从20世纪70年代开始的。现在,为进一步开发氢能,推动氢能利用的发展,氢能技术已被列入《科技发展“十五”计划和2015年远景规划(能源领域)》。

氢燃料电池技术,一直被认为是利用氢能,解决未来人类能源危机的终极方案。上海一直是中国氢燃料电池研发和应用的重要基地,包括上汽、上海神力、同济大学等企业、高校,也一直在从事研发氢燃料电池和氢能车辆。随着中国经济的快速发展,汽车工业已经成为中国的支柱产业之一。2007年中国已成为世界第三大汽车生产国和第二大汽车市场。与此同时,汽车燃油消耗也达到8000万吨,约占中国石油总需求量的1/4。在能源供应日益紧张的今天,发展新能源汽车已迫在眉睫。用氢能作为汽车的燃料无疑是最佳选择。

虽然燃料电池发动机的关键技术基本已经被突破,但是还需要更进一步对燃料电池产业化技术进行改进、提升,使产业化技术成熟。这个阶段需要政府加大研发力度的投入,以保证中国在燃料电池发动机关键技术方面的水平和领先优势。这包括对掌握燃料电池关键技术的企业在资金、融资能力等方面予以支持。除此之外,国家还应加快对燃料电池关键原材料、零部件国产化、批量化生产的支持,不断整合燃料电池各方面优势,带动燃料电池产业链的延伸。同时政府还应给予相关的示范应用配套设施,并且支持对燃料电池相关产业链予以培育等,以加快燃料电池车示范运营相关的法规、标准的制定和加氢站等配套设施的建设,推动燃料电池汽车的载客示范运营。有政府的大力支持,氢能汽车一定能成为朝阳产业。

分类

根据氢能生产来源和生产过程中的排放情况,人们将氢能分别命名为灰氢、蓝氢、绿氢。

灰氢

灰氢,是通过化石燃料(例如石油、天然气、煤炭等)燃烧产生的氢气,在生产过程中会有二氧化碳等排放。目前,市面上绝大多数氢气是灰氢,约占当今全球氢气产量的95%左右。

灰氢的生产成本较低,制氢技术较为简单,而且所需设备、占用场地都较少,生产规模偏小。

蓝氢

蓝氢,是将天然气通过蒸汽甲烷重整或自热蒸汽重整制成。虽然天然气也属于化石燃料,在生产蓝氢时也会产生温室气体,但由于使用了碳捕捉、利用与储存(CCUS)等先进技术,温室气体被捕获,减轻了对地球环境的影响,实现了低排放生产。

绿氢

绿氢,是通过使用再生能源(例如太阳能、风能、核能等)制造的氢气,例如通过可再生能源发电进行电解水制氢,在生产绿氢的过程中,完全没有碳排放。

绿氢是氢能利用的理想形态,但受到目前技术及制造成本的限制,绿氢实现大规模应用还需要时间。[3]

开发利用

开发方面

氢元素在地球上主要以化合物的形式存在于水和化石燃料中,现有制氢技术大多依赖化石能源,无法避免碳排放。目前,可再生能源制氢技术正在逐步成熟,可以通过可再生能源发电再电解水来制取零碳排放的氢气。科学家还在探索太阳能光解水制氢、生物质制氢等新型制氢技术,清华大学核能与新能源技术研究院研发的核能制氢技术预计10年后启动示范。此外,氢能产业链还包括储运、加注、应用等环节,也都面临着技术挑战和成本制约。以储运为例,氢气在常温常压下密度低、易泄漏,与钢材长期接触会使后者发生“氢脆”而破损,储存和运输比煤炭、石油、天然气都要困难得多。

氢的生产成本主要是对应可再生能源发电的成本,过去因为电的成本高,所以很少用可再生能源电力制氢。随着可再生能源电力成本下降,相对应制氢的成本也在随之下降。[4]

2019年6月,中国科学技术大学宋礼教授和江俊教授合作,创新思路设计出一种“松果结构”的铂金属催化剂,在制氢效果不变的情况下将铂金属的用量降低到传统商业催化剂的约1/75。[5]

制备方式

  1. 电解水,电解水制氢是通过电能给水提供能量,破坏水分子的氢氧键来制取氢气的方法。其工艺过程简单、无污染,制取效率一般在 75%—85%,每立方米氢气电耗为 4—5 kW·h。由于电费占整个水电解制氢生产费用的 80%左右,导致其竞争力并不高。因此水电解制氢成本的关键在于耗能问题。由此引出两条降成本的途径:一是降低电解过程中的能耗,二是采用低成本电力为制氢原料。目前主流的电解水制氢技术有三种类型:包括碱性电解水制氢、质子交换膜电解水(PEM)制氢和固态氧化物电解水(SOEC)制氢,其中碱性电解水制氢是最为成熟、产业化程度最广的制氢技术,但其电解效率仅为 60-75%,国外研发的 PEM技术与 SOEC 技术均能有效提高电解效率,尤其是 PEM 技术已引入国内市场。产品纯度高、无污染,但是高成本了限制其推广。

  2. 光伏制氢,光伏发电制氢主要利用光伏发电系统所发直流电直接供应制氢站制氢用电。光伏直流发电系统相比传统电站减少了逆变和升压的过程,主要设备设施包括光伏组件、汇流箱、支架、基础、接地装置等,光伏组件可根据制氢站输入电压和电流要求进行串、并连配置,从而提高系统效率。电解水制氢目前技术成熟、设备简单,运行和管理较为方便,制取氢气纯度较高,无污染,主要有3种技术路线。碱性电解槽制氢。该种电解槽的结构简单,适合大规模制氢,价格较便宜,效率偏低约70%~80%,主要设备包括电源、阴阳极、横膈膜、电解液和电解槽箱体组成,电解液通常为氢氧化钠溶液,电解槽主要包括单极式和双极式。聚合物薄膜电解槽(PEM Electrolyzer)制氢。效率较碱性电解槽效率更高,主要使用了离子交换技术。电解槽主要由聚合物薄膜、阴阳两电极组成,由于较高的质子传导性,聚合物薄膜电解槽工作电流可大大提高,从而提升电解效率。随着质子交换膜、电极贵金属技术进步,聚合物薄膜电解槽制氢成本将会大大降低。固体氧化物电解槽(Solid Oxide Electrolyzer)制氢。可在高温下工作,部分电能可由热能替代,效率高、成本低,固体氧化物电解槽是三种电解槽中效率最高的设备,反应后的废热可与汽轮机、制冷系统进行联合循环利用,提升效率,可达到90%。[6]

  3. 煤制氢,对于煤气化制氢来说,煤炭成本占比最大,能够占到总成本的 40%~45%,因此在制氢设备价格较为固定,流程中所需条件难以大幅度改变的基础下,降低煤气化制氢成本应该从降低煤炭价格入手。

  4. 天然气制氢,天然气的主要成分是甲烷(体积含量大于 85%),因此一般说的天然气制氢就是甲烷制氢。甲烷制氢方法主要有甲烷水蒸气制氢(SMR),甲烷部分氧化(POX)和甲烷自热重整(ATR)。其中甲烷水蒸气重整(SMR)是工业上最为成熟的制氢技术,约占世界制氢量的 70%。甲烷水蒸气重整是指在催化剂存在及高温条件下,使甲烷与水蒸气发生反应生成合成气。为防止催化剂中毒,原料天然气需进行脱硫预处理至硫的质量分数小于 1×10-7,然后经过重整反应制备合成气,再经过水煤气变换反应将 CO 进一步转化为氢气和CO2,最后将 CO2 通过变压吸附(PSA)脱除得到氢气。虽然适用范围广,但是原料利用率低,工艺复杂,操作难度高,并且生成物中的二氧化碳等温室气体使之环保性降低。目前,天然气制氢仍是我国最主要的制氢来源,占总制氢量的 48%。

  5. 甲醇制氢

  6. 工业副产品制氢,化工副产品制氢主要可以分为焦炉气制氢、氯碱副产品制氢、丙烷脱氢和乙烷裂解等几种方式,其中氯碱副产品制氢的由于工艺成本最为适中且所制取的氢气纯度较高等优势,成为目前化工副产品中较为适宜的制氢方式。氯碱制氢是以食盐水(NaCl)为原料,采用离子膜或者石棉隔膜电解槽生产烧碱(NaOH)和氯气,同时得到副产品氢气的工艺方法。之后再使用 PSA 等技术去除氢气中的杂质即可得到纯度高于 99%的氢气。国家统计局的数据显示,2018 年氯碱厂的产量为 2620.5 万吨,根据氯碱平衡表,烧碱与氢气的产量配比为 40:1,理论上 2018 年氯碱副产品制氢产生了 65.5 万吨氢气,即 73.8 亿Nm3的氢气。目前氯碱工业中成本最高的部分是用电成本,使用离子膜法生产烧碱所需的电耗 2150~2200 kWh/t。上面电解水部分已经对我国电价的基本情况进行了介绍,这里就不做赘述。化工副产物制氢的成本难以单独核算。目前我国规划和在建的丙烷脱氢项目预计可以副产并外售 86.8 万吨氢。我国规划中的乙烷裂解产能达到 1460万吨,可以副产并外售的氢气达到 90.4 万吨。乙烯是中国需求量最大的烯烃之一,是合成塑料、纤维和橡胶的基础原料。根据中国产业信息网的信息,过去十年我国的乙烯表观消费快速增长,从 2008 年的 1096 万吨增长到 2017 年的 2143 万吨,年均复合增长率为 8%。随着乙烷裂解技术的逐渐成熟,国内企业开始布局乙烷裂解的大规模生产,预计到 2021年,乙烷裂解生产乙烯的乙烯产量将占比接近 41%,而氢气作为乙烷裂解的副产品之一,也会随着乙烷裂解技术的不断进步而产量快速增长。目前我国规划中的乙烷裂解产能达到 1460 万吨,可以副产并外售的氢气达到 90.4 万吨。所以乙烷裂解副产品制氢同丙烷脱氢制氢相同,都是未来潜在最具优势的燃料电池车用氢源选择之一。[7]

  7. 工业尾气制氢,利用工业产品副产物,成本较低。但是以焦炉气制氢为例,不仅受制于原料的供应,建设地点需依靠焦化企业,而且原料具有污染性。

利用方面

氢能的利用,涉及制氢、储运、应用3个环节,有的已经实现,有的人们正在努力追求。为了达到清洁新能源的目标,氢的利用将充满人类生活的方方面面,我们不妨从古到今,把氢能的主要用途简要叙述一下。

依靠氢能

1869年俄国著名学者门捷列夫整理出化学元素周期表,他把氢元素放在周期表的首位,此后从氢出发,寻找与氢元素之间的关系,为众多的元素打下了基础,人们则氢的研究和利用也就更科学化了。至1928年,德国齐柏林公司利用氢的巨大浮力,制造了世界上第一艘“LZ—127齐柏林”号飞艇,首次把人们从德国运送到南美洲,实现了空中飞渡大西洋的航程。大约经过了十年的运行,航程16万多公里,使1.3万人领受了上天的滋味,这是氢气的奇迹。

然而,更先进的是本世纪50年代,美国利用液氢作超音速和亚音速飞机的燃料,使B57双引擎辍炸机改装了氢发动机,实现了氢能飞机上天。特别是1957前苏联宇航员加加林乘坐人造地球卫星遨游太空和1963年美国的宇宙飞船上天,紧接着1968年阿波罗号飞船实现了人类首次登上月球的创举。这一切都依靠着氢燃料的功劳。面向科学的21世纪,先进的高速远程氢能飞机和宇航飞船,商业运营的日子已为时不远。过去帝王的梦想将被现代的人们实现。

氢动力汽车

氢能车氢能车以氢气代替汽油作汽车发动机的燃料,已经过日本、美国、德国等许多汽世公司的试验,技术是可行的,目前主要是廉价氢的来源问题。氢是一种高效燃料,每公斤氢燃烧所产生的能量为33.6千瓦小时,几乎等于汽油燃烧的2.8倍。氢气燃烧不仅热值高,而且火焰传播速度快,点火能量低(容易点着),所以氢能汽车比汽油汽车总的燃料利用效率可高20%。当然,氢的燃烧主要生成物是水,只有极少的氮氢化物,绝对没有汽油燃烧时产生的一氧化碳、二氧化硫等污染环境的有害成分。氢能汽车是最清洁的理想交通工具。

BMW氢能7系BMW氢能7系氢能汽车的供氢问题,目前将以金属氢化物为贮氢材料,释放氢气所需的热可由发动机冷却水和尾气余热提供。现在有两种氢能汽车,一种是全烧氢汽车,另一种为氢气与汽油混烧的掺氢汽车。掺氢汽车的发动机只要稍加改变或不改变,即可提高燃料利用率和减轻尾气污染。使用掺氢5%左右的汽车,平均热效率可提高15%,节约汽油30%左右。因此,近期多使用掺氢汽车,待氢气可以大量供应后,再推广全燃氢汽车。德国奔驰汽车公司已陆续推出各种燃氢汽车,其中有面包车、公共汽车、邮政车和小轿车。以燃氢面包车为例,使用200公斤钛铁合金氢化物为燃料箱,代替65升汽油箱,可连续行车130多公里。德国奔驰公司制造的掺氢汽车,可在高速公路上行驶,车上使用的储氢箱也是钛铁合金氢化物。

掺氢汽车的特点是汽油和氢气的混合燃料可以在稀薄的贫油区工作,能改善整个发动机的燃烧状况。在中国许当城市交通拥挤,汽车发动机多处于部分负荷下运行、采用掺氢汽车尤为有利。特别是有些工业余氢(如合成氨生产)未能回收利用,若作为掺氢燃料,其经济效益和环境效益都是可取的。

截至2020年底,全球氢燃料电池汽车保有量较上一年度增加38%。氢能的大规模应用正从汽车领域逐步拓展至其他交通、建筑和工业等领域。应用在轨道交通和船舶上,氢能可降低长距离、高负荷交通运输对传统油气燃料的依赖,比如去年初,日本丰田公司开发并交付了首批海洋船舶的氢燃料电池系统。应用于分布式发电,氢能可为家庭住宅、商业建筑供电供暖。氢能还可直接为石化、钢铁、冶金等化工行业提供高效原料、还原剂和高品质热源,有效减少碳排放。

氢能发电

大型电站,无论是水电、火电或核电,都是把发出的电送往电网,由电网输送给用户。但是各种用电户的负荷不同,电网有时是高峰,有时是低谷。为了调节峰荷、电网中常需要启动快和比较灵活的发电站,氢能发电就最适合抢演这个角色。利用氢气和氧气燃烧,组成氢氧发电机组。这种机组是火箭型内燃发动机配以发电机,它不需要复杂的蒸汽锅炉系统,因此结构简单,维修方便,启动迅速,要开即开,欲停即停。在电网低负荷时,还可吸收多余的电来进行电解水,生产氢和氧,以备高峰时发电用。这种调节作用对于用网运行是有利的。另外,氢和氧还可直接改变常规火力发电机组的运行状况,提高电站的发电能力。例如氢氧燃烧组成磁流体发电,利用液氢冷却发电装置,进而提高机组功率等。

更新的氢能发电方式是氢燃料电池。这是利用氢和氧(成空气)直接经过电化学反应而产生电能的装置。换言之,也是水电解槽产生氢和氧的逆反应。70年代以来,日美等国加紧研究各种燃料电池,现已进入商业性开发,日本已建立万千瓦级燃料电池发电站,美国有30多家厂商在开发燃料电池.德、英、法、荷、丹、意和奥地利等国也有20多家公司投入了燃料电池的研究,这种新型的发电方式已引起世界的关注。

电机漆包线引出线熔焊电机漆包线引出线熔焊燃料电池的简单原最巧是将燃料的化学能直接转换为电能,不需要进行燃烧,能源转换效率可达60%—80%,而且污染少,噪声小,装置可大可小,非常灵活。最早,这种发电装置很小,造价很高,主要用于宇航作电源。现在已大幅度降价,逐步转向地面应用。目前,燃料电池的种类很多,主要有以下几种:

燃料电池

氢燃料电池由电堆、电控、供氢装置、供空气装置等部件组成。电堆是组成燃料电池的最基础、最关键的核心部件。电堆中的氢气和氧气相遇,发生化学反应产生电。其中的技术难点在于,整个过程必须实现气、水、热、电、力这五个要素的相互协同,才能释放出最大效能。

关于氢燃料电池,国际通常两条技术路线并行:金属双极板水冷电堆和石墨双极板水冷电堆。前者在低温启动、体积与功率密度等方面具有优势,后者在可靠性、寿命和成本等方面有长处,是目前燃料电池商用车的首选对象。[8]

磷酸盐型燃料电池是最早的一类燃料电池,工艺流程基本成熟,美国和日本已分别建成4500千瓦及11 000千瓦的商用电站。这种燃料电池的操作温度为200℃,最大电流密度可达到150毫安/平方厘米,发电效率约45%,燃料以氢、甲醇等为宜,氧化剂用空气,但催化剂为铂系列,目前发电成本尚高,每千瓦小时约40~50美分。

融熔燃料

融熔碳酸盐型燃料电池一般称为第二代燃料电池,其运行温度650℃左右,发电效率约55%,日本三菱公司已建成10千瓦级的发电装置。这种燃料电池的电解质是液态的,由于工作温度高,可以承受一氧化碳的存在,燃料可用氢、一氧化碳、天然气等均可。氧化剂用空气。发电成本每千瓦小时可低于40美分。

固体电池

氢氧焰水针剂拉丝封口氢氧焰水针剂拉丝封口固体氧化物型燃料电池被认为是第三代燃料电池,其操作温度1000℃左右,发电效率可超过60%,目前不少国家在研究,它适于建造大型发电站,美国西屋公司正在进行开发,可望发电成本每千瓦小时低于20美分。

此外,还有几种类型的燃料电池,如碱性燃料电池,运行温度约200℃,发电效率也可高达60%,且不用贵金属作催化剂,瑞典已开发200千瓦的一个装置用于潜艇。美国最早用于阿波罗飞船的一种小型燃料电池称为美国型,实为离子交换膜燃料电池,它的发电效率高达75%,运行温度低于100℃,但是必需以纯氧作氧化剂。后来,美国又研制一种用于氢能汽车的燃料电池,充一次氢可行300公里,时速可达100公里,这是一种可逆式质子交换膜燃料电池,发电效率最高达80%。

燃料电池理想的燃料是氢气,因为它是电解制氢的逆反应。燃料电池的主要用途除建立固定电站外,特别适合作移动电源和车船的动力,因此也是今后氢能利用的孪生兄弟。

家庭用氢

首饰焊接与有机玻璃抛光首饰焊接与有机玻璃抛光随着制氢技术的发展和化石能源的缺少,氢能利用迟早将进入家庭,首先是发达的大城市,它可以像输送城市煤气一样,通过氢气管道送往千家万户。每个用户则采用金属氢化物贮罐将氢气贮存,然后分别接通厨房灶具、浴室、氢气冰箱、空调机等等,并且在车库内与汽车充氢设备连接。人们的生活靠一条氢能管道,可以代替煤气、暖气甚至电力管线,连汽车的加油站也省掉了。这样清洁方便的氢能系统,将给人们创造舒适的生活环境,减轻许多繁杂事务

氢能在工业领域(如切割,焊接),巳有非常长的历史. 特别是在首饰加工行业,有机玻璃制品火焰抛光, 连铸坯切割,制药厂水针剂拉丝封口等领域的应用非常普及.

作为新能源,其安全性受到人们的普遍关注。从技术方面讲,氢的使用是绝对安全的。氢在空气中的扩散性很强,氢泄漏或燃烧时,可以很快地垂直升到空气中并消失得无影无踪,氢本身没有毒性及放射性,不会对人体产生伤害,也不会产生温室效应。科学家已经做过大量的氢能安全试验,证明氢是安全的燃料。如在汽车着火试验中,分别将装有氢气和天然汽油燃料罐点燃,结果氢气作为燃料的汽车着火后,氢气剧烈燃烧,但火焰总是向上冲,对汽车的损坏比较缓慢,车内人员有较长得时间逃生,而天然燃料的汽车着火后,由于天然气比空气重,火焰向汽车四周蔓延,很快包围了汽车,伤及车内人员的安全。

氢能特点

安全环保

氢气分子量为2, 是空气的1/14, 因此,氢气泄漏于空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会聚集地面而构成易燃易爆危险。无味无毒,不会造成人体中毒,燃烧产物仅为水,不污染环境。

高温高能

1kg氢气的热值为34000Kcal, 是汽油的三倍。氢氧焰温度高达2800度,高于常规液气。

热能集中

氢氧焰火焰挺直,热损失小,利用效率高。

自动再生

氢能来源于水,燃烧后又还原成水。

催化特性

氢气是活性气体催化剂,可以与空气混合方式加入催化燃烧所有固体,液体、气体燃料。加速反应过程,促进完全燃烧,达到提高焰温、节能减排之功效。

还原特性

各种原料加氢精炼.

变温特性

可根据加热物体的熔点实现焰温的调节。

来源广泛

氢气可由水电解制取,水取之不尽,而且每kg水可制备1860升氢氧燃气。

即产即用

利用先进的自动控制技术,由氢氧机按照用户设定的按需供气,不贮存气体。

应用范围

适合于一切需要燃气的地方。

可依赖性

高效清洁

氢能是高效清洁的合能体能源

能源可以分为两大类,一次能源和二次能源。一次能源是指以自然形态存在的能源,包括风能、水能、太阳能、地热能和核能等。二次能源是指由一次能源经过加工转换以后得到的能源,包括电能、汽油、柴油、液化石油气,氢能等。二次能源又可以分为“过程性能源”和“含能体能源”,电能就是应用最广的过程性能源,而汽油和柴油是目前应用最广的含能体能源。

氢元素周期表代号H,元素周期表序号1,英文Hydrogen,原子量1.0079,熔点-259.14度,沸点-252.87度。氢是重量最轻,导热性及燃烧性最好,燃烧最清洁的元素。氢能是人类能够从自然界获取的储量最丰富且高效的含能体能源。

表现卓越

氢能各项性能表现卓越,氢燃料电池将结束内燃机时代

现下对氢能的应用主要是通过氢燃料电池来实现的。氢燃料电池的工作方式从本质上不同于内燃机,氢燃料电池通过化学反应产生电能来推动汽车而内燃机车则是通过燃烧产生热能来推动汽车。由于燃料电池汽车工作过程不涉及燃烧因此无机械损耗及腐蚀,氢燃料电池所产生的电能可以直接被用在推动汽车的四轮上从而省略了机械传动装置,研究表明氢燃料电池的产能效率是内燃机的四倍以上,根据权威机构研究表明汽油能量从油箱转换到车轮的过程由于燃烧,散热,机械磨损等原因最后传输到车轮的推进能量不到五分之一,而氢燃料电池汽车用能效率却能达到五分之三以上,换句话说如果用同现下汽车的储油箱储藏同样体积的氢能的话可以行驶现下汽车三倍以上的距离而不用加氢。令人兴奋的是通过计算机控制还可以对四轮实现智能化,原先不可想象的横向泊车,原地90到180度转向,通过对四轮施加不同速度来防滑等特殊性能均由于机械传动装置的省略而变得轻而易举。还有氢能的安全存储性也大大高于燃油,由于氢是质量最轻的元素,即使泄漏燃烧也只会向上蒸发不会像汽油一样附着于人体或车辆长时间燃烧,氢能的安全系数大大高于燃油。还有氢燃料电池汽车的尾气排放物是水,对空气和环境的污染为零。这就难怪各发达国家的有识之士都已强烈意识到氢燃料电池将结束内燃机时代这一必然趋势,已经开发研制成功氢燃料电池汽车的汽车厂商包括通用、福特、丰田、奔驰、宝马、克莱斯勒等大公司。

各国加大投资

氢经济正悄然加速,各国紧锣密鼓加大投资

随着氢能不断被媒体关注和曝光,氢经济一词(Hydrogen Economy)也逐渐被政治家和战略家们提出。正如全球对石油高度依赖导致了石油经济一样,氢能的广泛应用将影响到每个人生活的方方面面,进而成为主导经济的主要因素和工业的血液。由于氢能技术特别是氢燃料电池技术不但可以驱动汽车,船只和飞机,还可以为手机,电脑,工厂及家庭提供稳定高效无污染电源,实际上氢经济比石油经济的影响还要广大和深远。

氢能是取之不尽用之不竭的高密度能源,氢可以从很多种渠道获得,包括原油,天然气,沼汽,农作物秸秆和有机废水,而氢的最大来源是水,氢燃料电池产生的排出物也是水,江河湖海就是最大的氢矿,氢能源的可再生性为人类提供了取之不尽用之不竭的完美能源。氢经济对人类社会的深远影响将不亚于电或者汽车的发明与应用。现下除了汽车厂商在大力开发氢燃料电池汽车以外,各大石油及电气公司也斥巨资加大对氢能的研发,包括克莱斯勒、宝马、通用电气、英国石油等超级跨国集团均是此次北京氢能论坛的赞助商。美国总统布什及英国首相布莱尔均已经公开表示支持氢能研究与开发,并积极为氢能研发在国会和工商界募集资金。日本和欧盟也不甘落后纷纷加大投资。

能源战略

能源战略是各国战略之战略

日本的石油自给目前为止不到0.5%,而欧盟也不到30%,日本与欧盟的石油战略储备只有90到120天左右。日本强烈意识到自己对中东石油的严重依赖正在积极推进其“黑金”战略,次战略包括向俄罗斯和伊朗提供大量援助以换取油田开采权等。早在上世纪80年代美国在能源战略上就做过重大调整,美国采取不惜重金从中东每年大量进口石油的政策而对阿拉斯加和美国中南部的大油田不予开发,虽然这一政策导致不少中小石油公司的破产但是保证了未来美国在与外界完全隔绝的情况下仍然有至少二十年的石油储备,再加上一个强大的海军对中东石油海上运输线的保护,美国的能源战略可以说是高枕无忧。而俄罗斯有广大的西伯利亚油田尚待开发,俄罗斯能源自给也是毫无疑义。回顾二次世界大战不少美国历史学家指出,在二战中后期美苏两国在原油产量,钢铁产量和人口上同德日相比均占绝对优势,美苏获得二战胜利的根本原因是两国的能源和资源的根本战略优势。

战略优势的关键

率先全面启动氢经济是我国取得长期战略优势的关键

随着我国经济持续高速增长,我国人民生活不断向小康迈进并且我国国际地位不断提高。可是能源危机问题也因经济高速发展而造成的对能源的巨大需求而逐渐成为遏制我国长期发展的战略瓶颈。相比美俄,我国暂时能源战略优势明显不足,抢先进入氢经济是我国摆脱百年来科技和战略落后的最佳切入点。

目前我国工业企业包括汽车工业在研发实力和资金上距美日欧还有一定差距,在氢能开发和燃料电池技术上我国还处于落后状态。我国在氢能开发研究上已经投入大量资金和人力,可是能源战略事关重大,我国中央政府可以考虑利用我国特有的中央调控和执行性强的优势,把氢能的开发和推动氢经济列为国家发展战略并展开求真务实的氢经济大跃进。率先成功启动氢经济是我国逐渐摆脱对海上石油供给线的依赖,摆脱潜在的海上封锁,成功取得台海乃至全球长期战略优势的关键。

相关会议

2020年10月19日,2020联合国开发计划署氢能产业大会在广东佛山开幕。大会以“发展绿色氢能、提振世界经济”为主题,将举办多场主题论坛,围绕燃料电池技术、氢能技术与应用、政策标准、氢安全等展开深入研讨,为国内外氢能及燃料电池产业搭建深度交流平台。[9]

2021年3月20日,大湾区汽车创新论坛“携手先行示范,共创氢能未来”在佛山南海氢能中心举行,来自新能源汽车领域的产学研各界专家学者和企业代表,围绕氢燃料电池汽车产业布局、燃料电池汽车市场化、氢能商业化、氢储运技术等热点话题,通过主题报告演讲和圆桌会议互动的方式展开深入交流。[10]

2021年5月18日,2021中关村论坛系列活动――中关村氢能发展论坛在北京市房山区召开,届时国内外著名专家学者、行业专家、氢能各应用领域从业者、氢能产业链头部企业家将汇聚一堂,以“助力绿色冬奥 引领能源变革”为主题,围绕碳3060、绿色能源、科技冬奥、氢能产业发展等话题进行分享交流,共同探讨产业在政策、技术、模式等方面的新成果、新趋势,推动氢能产业的良性快速发展。[11]

2021年5月28日,2021年国际氢能产业合作大会在成都召开。大会由绿色智慧能源组织、四川省经济合作局、建行四川省分行、省贸促会主办。会议以“碳中和的‘氢能引擎’——中国与国际氢能产业合作新格局”为主题,纵览氢能时代风云,洞察脱碳社会大势,共谱气候合作新篇。[12]

2021年6月8日,2021(大连)丙烷脱氢产业链及氢能综合利用论坛在大连召开。200多位与会者聚焦丙烷脱氢产业链高质量发展路径,并就大连 “十四五”氢能产业链规划及氢能产业发展优势展开研讨。[13]

2021年6月10日,山东省商务厅与山东省能源局、山东省政府驻京办在北京共同举办山东省氢能产业发展国际合作(北京)推介会。推介会吸引了来自全球10个国家(地区)的43家跨国公司,其中世界500强企业18家,省内12个地市20多家氢能领域相关企业参会。[14]

2021年6月17日-18日,2021中国绿色氢能发展大会在北京国际会议中心隆重召开。大会的主题是“绿色氢能,启动未来”,由氢启未来网和中国国际商会山东商会联合主办。[15]

2021年7月12日,“绿色清洁能源”主题论坛在贵阳国际生态会议中心举行。在参会领导及嘉宾的见证下,贵阳经济技术开发区管委会与东方电气集团东方锅炉股份有限公司签署《氢能产业园示范项目投资协议》,与德国HEE技术有限公司、贵州燃气集团股份有限公司、贵州海上丝路国际投资有限公司签署《中德氢能技术合作及燃料电池制造项目合作协议》,标志着贵阳经开区依托氢能技术的绿色发展之路取得新突破。[16]

2021年8月,由中国电动汽车百人会、嘉兴市人民政府共同主办的2021嘉兴氢能产业发展高峰论坛正式召开。行业专家学者、政府部门代表、示范应用企业负责人围绕推动燃料电池汽车示范、构建地区氢能产业生态等问题进行深度探讨,共谋氢能全产业链的突破与发展。[17]

2021年9月25日,2021全球能源转型高层论坛在昌平区未来科学城开幕。昌平区氢能产业创新发展行动计划和氢能产业支持政策在论坛上发布,提出全力建设全球领先的氢能技术创新高地,氢能领域国家战略科技力量的创新高地,国内一流的氢能前沿技术策源地、关键技术主阵地。2025年前,实现核心技术批量产业化,氢能产业关键环节技术与应用达到国际先进水平。[18]

国内发展

2018年9月28日,武汉首批氢燃料电池动力公交车在中国光谷武汉东湖新技术开发区359路公交线路试运行,武汉首座加氢站同步启用,标志着武汉市氢燃料电池动力公交车全面进入商业化示范运行新阶段。[19]

2021年3月30日,大连首批10辆氢燃料电池公交车上线,承担两条公交线路的日常运营任务。这标志着辽宁城市公共交通事业进入“氢能时代”,擘画出一幅“安全、便捷、经济、舒适、环保”的未来出行场景,同时也标志着大连氢能产业进入新的发展阶段。[20]

2021年4月16日,位于海南博鳌镇的中国石化琼海银丰撬装加氢站投入运营,该加氢站将为服务于博鳌亚洲论坛2021年年会的氢燃料电池客车提供氢能保障。[21]同日,在科技部部长王志刚与山东省时任省委书记刘家义的见证下,“氢进万家”科技示范工程(以下简称“氢进万家”)框架协议在济南签署,此举意味着山东成为全国首个氢能大规模推广应用的示范省份。[22]

2021年8月16日,北京市经济和信息化局发布《北京市氢能产业发展实施方案(2021-2025年)》提出,以北京冬奥会和冬残奥会重大示范工程为依托,2023年前,培育5-8家具有国际影响力的氢能产业链龙头企业,京津冀区域累计实现产业链产业规模突破500亿元,减少碳排放100万吨。2025年前,具备氢能产业规模化推广基础,产业体系、配套基础设施相对完善,培育10-15家具有国际影响力的产业链龙头企业,形成氢能产业关键部件与装备制造产业集群,建成3-4家国际一流的产业研发创新平台,京津冀区域累计实现氢能产业链产业规模1000亿元以上,减少碳排放200万吨。[23]

2021年8月20日,由天津市交通运输委组织推动实施的全市首个氢能运输示范应用场景——荣程众和自用氢能源项目落成暨启用仪式在天津市津南区举行。[24]

2021年8月,由北京市牵头申报的京津冀氢燃料电池汽车示范城市群,被国家五部委联合批准为首批示范城市群,天津滨海新区位列其中。[25]

2021年8月23日,中国石化重庆首座加氢站——半山环道综合加能站近日正式建成。该站是国内首座应用储氢井技术的加氢站,日供氢能力1000公斤,将为重庆首批氢能示范公交车和市内物流车提供加氢服务,助力重庆氢能产业发展。[26]

2021年8月26日,天津港保税区管委会与中国石化销售股份有限公司天津石油分公司、轻程(上海)物联网科技有限公司在空港投资服务中心签署合作协议,共同组建中石化氢能源(天津)有限公司,发挥各方在产业、资源、场景、政策方面的综合优势,强强联合,深耕氢燃料电池汽车、加氢站建设运营等领域,进一步促进氢能源开发应用,助力实现“碳达峰、碳中和”目标。[27]

2021年9月28日,中国船舶集团七一八研究所中船(邯郸)派瑞氢能科技有限公司正式入驻邯郸氢能产业园,这也是我国最大的氢能装备生产基地。[28]

2021年10月29日,全国首台氢燃料电池混合动力机车从国家电投锦白铁路大板东站缓缓驶出,标志着我国轨道交通装备在新能源领域实现了由产品开发到实践应用的重大跨越。[29]

国外发展

2018年8月,澳大利亚联邦科学与工业研究组织发布《澳大利亚国家氢能路线图——通向经济可持续发展的氢产业之路》,澳大利亚首席科学家阿兰·芬克尔领导的氢战略小组发布《澳大利亚未来之氢》报告,这两份重量级报告分析了国际氢能产业发展形势,认为氢能产业已经度过初始探索阶段,即将迎来发展期。

2018年年底,由澳大利亚政府间委员会(COAG)召开的第21届COAG能源委员会部长级会议上,来自澳大利亚中央政府、6个州和2个领地的能源、矿产、资源和环境官员们一致认为,氢能对于澳大利亚未来经济、社会和环境可持续发展与繁荣至关重要,将为澳大利亚经济发展提供重大机遇。澳将制定和执行国家氢能战略,支持发展清洁、创新和有竞争力的氢能产业,力争到2030年成为全球氢能产业主要参与者。[30]

2021年7月15日,雪佛龙公司与康明斯在美国签署谅解备忘录(MOU),在氢能和其他替代能源领域建立战略联盟,共同开发可行性商业机会。[31]

2021年8月,英国发布了首个氢能战略。英国政府表示,氢能将在化工、炼油、电力和重型运输等高污染、高耗能行业脱碳过程中发挥重要作用。到2030年,全英国的氢能经济价值将达到9亿英镑,并将创造超过9000个高质量的工作岗位。到2050年有可能增加到10万个就业机会,氢能经济价值将高达130亿英镑。

2021年9月,东盟能源中心(ACE)发布最新报告《东盟氢能——经济前景、发展和应用》(简称《报告》)。《报告》指出,氢能源为东盟成员国提供了一种选择:它不仅能推动绿色能源发展,还可以通过加强本地能源供应来改善该地区的能源安全状况。[32]

2021年9月13日,韩国政府表示,将八项额外的氢能源业务纳入政府金融支持的范围之内。为了加快氢能源的发展,今年2月韩国推出了一项新的立法。根据这项新立法,业务涉及氢能源的企业最高可以获得1.5亿韩元的资金支持。目前,已有一些氢燃料电池和充电设施企业获得了相关支持。此外,韩国政府还在为氢能源企业提供技术支持,并帮助其寻找客户。韩国计划在2025年之前扶持100家聚焦氢能源业务的企业,并在2040年将这一数量提升至1000家。韩国政府希望在交通和能源领域大力发展氢能源,计划在2040年前生产620万辆氢燃料电池汽车,并建设1200个充电站。

2021年9月,新日本石油公司准备与马来西亚国家石油公司合作发展氢能业务,在马来西亚建立零排放的氢能供应链。双方还将共同开发马来西亚以外的氢能业务机会。新日本石油公司之前已经开始在澳大利亚、中东和亚洲地区与合作伙伴一起扩大氢能业务。此外,液氢供应商岩谷产业公司等四家日本企业近期也在与澳大利亚当地企业合作,共同建设“绿色”液氢供应链项目。[33]

储氢

目前,氢气的储运主要分为气态、液态和固态3种方式。

  1. 气态储氢较为常见,可分为低压和高压两种。过去,街头巷尾卖气球的小贩,会载着一个大钢瓶,这就是低压储氢罐。而高压气态储氢最高气压可达70兆帕,目前我国常见的高压储氢气压也达到35兆帕,这就对压力容器提出了极高要求,目前高压储氢罐采用碳纤维制造,成本极高且要消耗较大的能源进行压缩。氢气在一定的低温下,会以液态形式存在。因此,可以将氢气压缩、冷却实现液态储存。常温、常压下液氢的密度为气态氢的845倍,但低温液态储氢不经济。氢气液化要消耗较大的冷却能量,而且必须使用超低温用的特殊容器,目前仅在储存空间有限的场合使用,如火箭发动机等。

  2. 含镁固态储氢系统成本接近锂电池。“固态储氢相对于高压气态和液态储氢,具有体积储氢密度高、工作压力低、安全性能好等优势。”周少雄介绍,固态储氢是未来高密度储存和安全氢能利用的发展方向。固态储存需要用到储氢材料,目前技术较为成熟的储氢材料主要是金属合金。储氢合金一般由两部分组成,一部分为吸氢元素或与氢有很强亲和力的元素,它控制着储氢量的多少,是组成储氢合金的关键元素,主要包括钛、镁等;另一部分是吸氢量小或根本不吸氢的元素,常见的有铁、镍等。这些合金材料与氢气在低温的条件下发生化学反应,氢气在其表面分解为氢原子。合金材料内部有大量细微的晶格,氢原子扩散进入到晶格内部空隙中,形成金属氢化物。想要把氢原子“释放”出来也很简单,只需施加一定热量,储氢材料就可以析出氢气。

  3. 液态储氢。[34]

储氢井

储氢井是指深埋在地下150米左右、使用专用材料制作而成的氢气储存地埋井,具有安全系数高、占地面积小等特点,其占地面积仅为目前普遍使用的地上储氢设备的1/10。

相关百科
返回顶部
产品求购 求购