太阳能光伏技术

太阳能光伏技术

目录导航

基本内容

太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,整个系统造价很高;在有公共电网的地区,光伏发电系统与电网连接并网运行,省去蓄电池,不仅可以大幅度降低造价,而且具有更高的发电效率和更好的环保性能。

 

 

 

概述编辑

太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。光伏发电产品主要用于三大方面:一是为无电场合提供电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草地各种灯具等;三是并网发电,这在发达国家已经大面积推广实施。到2009年,中国并网发电还未开始全面推广,不过,2008年北京奥运会部分用电是由太阳能发电和风力发电提供的。

据预测,太阳能光伏发电在21世纪会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。[1]

 

 

起源发展编辑

早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏打效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。

20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球约有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展,这之中太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。太阳能每秒钟到达地面的能量高达80万千瓦,假如把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量可达5.6×1012千瓦小时,相当于世界上能耗的40倍。正是由于太阳能的这些独特优势,20世纪80年代后,太阳能电池的种类不断增多、应用范围日益广阔、市场规模也逐步扩大。

20世纪90年代后,光伏发电快速发展,到2006年,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。美国是最早制定光伏发电的发展规划的国家。1997年又提出“百万屋顶”计划。日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。而德国新可再生能源法规定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。瑞士、法国、意大利、西班牙、芬兰等国,也纷纷制定光伏发展计划,并投巨资进行技术开发和加速工业化进程。

世界光伏组件在1990年——2005年年平均增长率约15%。20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。光伏组件的生产成本降到3美元/瓦以下。2006年的光伏行业调查表明,到2010年,光伏产业的年发展速度将保持在30%以上。年销售额将从2004年的70亿美金增加到2010年的300亿美金。许多老牌的光伏制造公司也从原来的亏本转为盈利。[2]

 

 

系统分类编辑

光伏发电系统分为独立光伏系统和并网光伏系统。

独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。

并网光伏发电系统是与电网相连并向电网输送电力的光伏发电系统。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。带有蓄电池的光伏并网发电系统常常安装在居民建筑;不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。[3]

 

 

电池方阵编辑

在有光照(无论是太阳光,还是其它发光体产生的光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”。在光生伏打效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。[4] 

(1) 钢化玻璃:其作用为保护发电主体(电池片),透光选用的要求:

  1、透光率必须高(一般91%以上);

  2、超白钢化处理

(2) EVA:目的是用来粘结固定钢化玻璃和发电主体(电池片),透明EVA材质的优劣直接影响到组件的寿命,暴露在空气中的EVA易老化发黄,会影响组件的透光率,从而影响组件的发电质量。除了EVA本身的质量外,组件厂家的层压工艺影响也是非常大的,如EVA胶连度不达标,EVA与钢化玻璃、背板粘接强度不够,都会引起EVA提早老化,影响组件寿命。

(3) 电池片:主要作用就是发电,发电主体市场上主流的是晶体硅太阳电池片、薄膜太阳能电池片,两者各有优劣。晶体硅太阳能电池片,设备成本相对较低,但消耗及电池片成本很高,光电转换效率也高,在室外阳光下发电比较适宜;薄膜太阳能电池,相对设备成本较高,消耗和电池成本很低,光电转化效率相对晶体硅电池片低,但弱光效应非常好,在普通灯光下也能发电,如计算器上的太阳能电池。

(4) 背板:作用是用来密封、绝缘、防水。一般都用TPT、TPE等材质必须耐老化,大部分组件厂家都质保25年。

(5) 铝合金:保护层压件,起一定的密封、支撑作用。

(6) 接线盒:其作用是保护整个发电系统,起到电流中转站的作用,如果组件短路接线盒自动断开短路电池串,防止烧坏整个系统。接线盒中最关键的是二极管的选用,根据组件内电池片的类型不同,对应的二极管也不相同。

(7) 硅胶:密封作用,用来密封组件与铝合金边框、组件与接线盒交界处有些公司使用双面胶条、泡棉来替代硅胶,国内普遍使用硅胶,工艺简单,方便,易操作,而且成本很低。[5]

蓄电池组

其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。[4]

充放电控制器

是能自动防止蓄电池过充电和过放电的设备。由于蓄电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充放电控制器是必不可少的设备。[4]

逆变器

是将直流电转换成交流电的设备。由于太阳能电池和蓄电池是直流电源,而负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成本高,但可以适用于各种负载。[4] 

跟踪控制系统

由于相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,如果太阳能电池板能够时刻正对太阳,发电效率才会达到最佳状态。世界上通用的太阳跟踪控制系统都需要根据安放点的经纬度等信息计算一年中的每一天的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC、单片机或电脑软件中,也就是靠计算太阳位置以实现跟踪。采用的是电脑数据理论,需要地球经纬度地区的的数据和设定,一旦安装,就不便移动或装拆,每次移动完就必须重新设定数据和调整各个参数;原理、电路、技术、设备复杂,非专业人士不能够随便操作。

 

 

光伏板编辑

光伏板组件是一种暴露在阳光下便会集热,将光能转换为直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

 

 

功率计算

太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法:[6]

1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗):若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。[6] 

2.计算太阳能电池板:按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。其中70%是充电过程中,太阳能电池板的实际使用功率。[6]

光伏技术

太阳是能量的天然来源。地球上每一个活着的生物之所以具有发挥作用的能力,甚至于是它的生存,都是由于直接或间接来自于太阳的能量。我们的地球处在离太阳差不多有一亿英里的地方。它所截取的辐射能已经少到令人难以置信的程度,即大约千万分之三,即使这么小的一点能量,实际上比整个世界现有的发电能力还大十万倍!全世界尤其是工业发达国家开始感到能量短缺,因此,人们开始求助于太阳能,以解决能源危机。

  太阳能光伏

太阳能每天都能无限供应,而且数量庞大。如果在大的电厂利用,就减少了温室效应,有些能源专家和环境保护的专家则认为,在满足人类今后能量需要方面,太阳能的热影响比任何其他替换品的热影响要小得多。作为一种不污染环境,又取之不尽的新能源,它无处不在。尤其是在电力供力方面,有专家认为太阳能发电最终将在电力供应中占20%。

太阳能是一种辐射能,太阳能发电意味着---要将太阳光直接转换成电能,它必须借助于能量转换器才能转换成为电能。将光能直接转换成电能的过程确切地说应叫光伏效应。不需要借助其它任何机械部件,光线中的能量被半导体器件的电子获得,于是就产生了电能。这种把光能转换成为电能的能量转换器,就是太阳能电池。太阳能电池也同晶体管一样,是由半导体组成的。它的主要材料是硅,也有一些其他合金。用于制造太阳能电池的高纯硅,要经过特殊的提纯处理制作。太阳能电池只要受到阳光或灯光的照射,就能够把光能转变为电能,使电流从一方流向另一方,一般就可发出相当于所接收光能的10~20% 的电来。一般来说,光线越强,产生的电能就越多。为了使太阳能电池板最大限度地减少光反射,将光能转变为电能,一般在它的上面都蒙上一层可防止光反射的膜, 使太阳能板的表面呈紫色。它的工作原理的基础是半导体PN结的光生伏打效应。所谓光生伏打效应就是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。当太阳光或其他光照射半导体的PN结时,就会在PN结的两边出现电压(叫做光生电压)。这种现象就是著名的光生伏打效应。使PN结短路,就会产生电流。

太阳能发电的主要优点在于:太阳能电池可以设置在房顶等平时不使用的空间,无噪音、寿命长,而且一旦设置完毕就几乎不要需要调整。现在只要将屋顶上排满太阳能电池,就可以实现家中用电的自给。现今太阳能的主要用途已不再是小规模的,从性质上来说,是专业化的。它从军事领域、通信领域到城市建设领域等都起到了重大的作用。委内瑞拉还推出廉价太阳能车、欧洲科学家研制出轻便的可穿在身上的太阳能电池。太阳能的利用存在着巨大的发展空间,有关的技术有可能在短时间内实现突破。它已被许多发达国家作为其能源战略的一个重要组成部分。

相关百科
返回顶部
产品求购 求购