逆变电源

逆变电源

目录导航

原理说明

把直流电逆变成交流电的电路称为逆变电路。在特定场合下,同一套晶闸管变流电路既可作整流,又能作逆变。

变流器工作在逆变状态时,如果把变流器的交流侧接到交流电源上,把直流电逆变为同频率的交流电反送到电网去,叫有源逆变。如果变流器的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,则叫无源逆变。交流变频调速就是利用这一原理工作的。有源逆变除用于直流可逆调速系统外,还用于交流饶线转子异步电动机的串级调速和高压直流输电等方面。

相对概念

交流电转换为直流电的方法就是整流;而直流电转换为交流电的方法是逆变。

整流,全波整流电路就是利用二极管单向导通的特性,用4个二极管连成一个桥式整流电路(见下图),使输入端是交流电流,其波形是正弦波,电流方向是交变的,而输出端波形电流变为同一方向,再经过滤波电路将波形滤掉之后可得到直流电。

逆变分类

源逆变也有无源逆变。比如说直流电压,经过一个简单的单相H型晶闸管桥,H的横就是那个输出,H的竖线上各有四个晶闸管,编号上12,下34,则分别开通14和23就得到正负相隔的输出电压和电流了。

逆变电源中的脉宽调制技术应用

基本型方波逆变电源电路简单,但输出电压波形的谐波含量过大,亦既THD(电流谐波畸变率)过大;移相多重叠加逆变电源输出电压波形的谐波含量小,亦即THD小,但电路较复杂。而PWM脉宽调制式逆变电源,既有电脑的电路,又可使输出电压波形,因而得到了广泛的应用。

所谓PWM脉宽调制技术(Pulse Width Modulation,PWM),是用一种参考波(通常是正弦波,有时也采用梯形波或注入零序谐波的正弦波或方波等)为调制波(Modulating Wave),而以N倍于调制波频率的三角波(有时也用锯齿波)为载波(Carrier Wave)进行波形比较,在调制波大于载波的部分产生一组幅值相等,而宽度正比于调制波的矩形脉冲序列用来等效调制波,用开关量取代模拟量,并通过对逆变电源开关管的通/断控制,把直流电变成交流电,这种技术就叫做脉宽控制逆变技术。[1]由于载波三角波(或锯齿波)的上下款度是线性变化的,故这种技术就叫做脉宽控制逆变技术。由于载波三角波(或锯齿波)的上下宽度是线性变化的,故这种调制方式也是线性的,当调制波为正弦波时,输出矩形脉冲序列的脉冲宽度按正弦规律变化,这种调制技术通常又称为正弦脉宽调制(Sinusoida PWM)技术。

逆变电源常见问题

u 受到外界干扰

逆变器可能会因使用场合中的一些强电磁波的干扰,如附近的马达、功率变频器、强磁场等。

尽量远离类似上面的设备。

u 逆变器没有反应

1. 电池和逆变器没有接好,重新接好。

2. 电池的极接反了,保险丝熔断。更换保险丝。

u 输出电压低

1. 过载,负载电流超过标称电流,关掉部分负载重新启动。

2. 输入电压太低。确保输入电压在标称电压范围之内。

u 低电压报警

1. 电池没电了需要充电。

2. 电池电压太低或者接触不良,再充电,检查电池端子或者用干布清理端子。

u 逆变器无输出

1. 电池电压太低,重新充电或者更换电池。

2. 负载电流太高,关闭部分负载重新启动逆变器。

3. 逆变器过温保护。让逆变器降温一段时间,并放在通风的地方。

4. 逆变器启动失败,重新启动。

5. 端子接反,保险丝熔断,更换保险丝。

u 逆变器不工作

检查电源开关,保险丝和电池连接线或者电烟器。

逆变器无直流输入

此类故障经常发生的原因是蓄电池未正确连接,逆变器的正负极必须与蓄电池正负极连接正确,正极接正极,负极接负极,正确连接后开关合上,基本就可以解决此类故障。

逆变器输入输出保险丝熔断

此类故障一般明显可以看到,只要更换保险丝即可。

蓄电池电压高于额定直流输入电压20%

逆变器有一个工作电压范围,一般为额定直流电压+-10%之间,如若高于此电压,需要更换蓄电池组或者更换逆变器,以防止对机器造成损坏。

蓄电池电压低于额定直流输入电压15%

此类问题主要是由于蓄电池电量不足,只需要给蓄电池组充电即可。

负载功率过大

这类问题主要是前期对负载功率计算不足造成,需要增大逆变器的功率或者减小负载功率即可。

用途

[2]逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。

发展展望

[3]随着谐振开关电源的发展,谐振变换的思想也被用在逆变电源系统中,即构成了谐振型高效逆变电源。该逆变电源是在DC/DC变换中采用了零电压或零电流开关技术,因而开关损耗基本上可以消除,即使当开关频率超过1MHz以上后,电源的效率也不会明显降低。实验证明:在工作频率相同的情况下,谐振型变换的损耗可比非谐振型变换降低30%~40%。目前,谐振型电源的工作频率可达500kHz到1MHz。

另外值得注意的是,光伏系统用中小功率逆变电源的研究正朝着模块化方向发展,即采用不同的模块组合,就可构成不同的电压、波形变换系统。

毫无疑问,光伏系统用中小功率逆变电源会采用高频变换电路结构。在一些技术细节上,也会有别于其它场合使用的逆变电源,如除了追求高可靠、高效率外,还应针对光伏行业的特点,将控制、逆变有效地合二为一,即光伏逆变电源在设计上应具有过压、欠压、短路、过热、极性接反等保护功能。这样做不但降低了系统的造价,而且提高了系统的可靠性。

英语语源

整流电路rectifying circuit逆变电源 contravariant power

并联逆变电源 parallel contravariant power

不间断电源(UPS)unintermittent power supply(UPS)

稳压电源constant voltage power

并联供水 parallel water supply

种类

逆变电源包括:

电力专用逆变电源

通信专用逆变电源

动力型工频逆变电源

工业正弦波逆变电源

方波逆变电源

医用逆变电源的作用和特点

国内的医疗设备大多采用220V市电供电。由于各种不同类型的医疗设备供电需求,使用最多的是集中式供电结构。即由一个集中的电源变换器产生所需各种电压等级的输出电压。由于它成本低廉、效率高、输出电压可调整、输出噪音小、动态响应快等非常适合医疗类设备使用,是医疗类设备目前使用最多的一种供电方式。医疗设备电源方案确定需要考虑下面几个问题。

安全与隔离是普通商用电源与医疗电源的一个重大差别。通常,除了一些实验分析类仪器,医疗设备大多安装在病床或手术台附近,离人和操作者的距离比较近,外壳常常会被触及到。医疗设备内部有各种各样的强,弱电的部件,如果强弱电之间的隔离或者是外壳材料绝缘有问题,就会非常危险。安全测试方面一般医疗设备电源都必须得到UL60601-1、C-UL、EN60601-1等安全认证。输入输出端必须要4,000V以上的隔离电压,而且要求对地漏电流低,符合安规爬电距离要求。而对于强电部分需采用双重绝缘,尤其有可能与设备外壳接触的部分更要加强绝缘设计[4]

电磁兼容性和抗电磁干扰能力

要为医疗类设备选择或者搭建一个好的供电系统,必须注意提高电源的电磁兼容性和抗电磁干扰能力。主要要从以下几个方面来考虑:设计。PCB的设计和布局,一般的电源中都会包含一些高频信号,PCB上的任何印制线都可以起到天线的作用,印制线的长度和宽度都会影响其阻抗和感抗,从而影响频率响应,及时通过直流信号的印制线也会从临近的印制线耦合到射频信号并引起电路的问题。所以医疗类电源必须选择大品牌,具有很强研发实力的公司的产品,这些产品在设计和生产工艺方面都能保证良好的品质。

应用

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。

屏蔽

为了抑制开关电源产生的辐射,消除电磁干扰对医疗设备内其他电子设备的影响,最好的办法就是对电源的磁场进行屏蔽,然后将整个屏蔽罩与医疗设备的机壳或地连为一体,这是个事半功倍的办法。

认证

现阶段一般医疗设备类电源都需要经过FCC-B、CISPR22-B、EN55011550226120461000等电磁兼容性及抗电磁干扰能力测试。选择完成这些测试的产品不仅能确保不对设备内其它电子元器件产生电磁影响,而且能减少医疗设备研发周期及推向市场前的受检时间。

尺寸及高功率密度

医疗类设备除了向多功能、高检测和调整精度方向发展外,更小尺寸及便于携带也是一个发展方向。这就要求医疗设备电源必须在更小的板载面积条件下拥有更高的功率输出。

特殊应用

市场上的集中式供电电源产品大多是标准输出,即使有部分电源产品可以通过外接电路的方式进行输出调节,调节范围也不大,而且稳定性也存在问题。如果碰到了低电压、大电流或者极高的直流电压情况该如何处理,当然可以采用定制方式,但价格相当高,客户能否接受。

价格

如今医疗设备的价格由于竞争的激烈,已经逐步透明,特别是一些家用的小型医疗设备,价格已经非常平民化、大众化。所以这就要求医疗设备的重要组成部分——电源,必须要有有竞争力的价格。

控制方法

数字PID控制

[5]PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。

PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。

PID算法简单明了,便于单片机或DSP实现。

采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。

状态反馈控制

状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

重复控制

重复控制是近几年发展起来的一种新型逆变电源控制方案,它可以克服整流型非线性负载引起的输出波形周期性的畸变。重复控制的思想是假定前一周期出现的基波波形畸变将在下一个周期的同一时间重复出现,控制器根据给定信号和反馈信号的误差来确定所需的校正信号,然后在下一个基波周期的同一时间将此信号叠加到原控制信号上,以消除后面各个周期将出现的重复性畸变。该控制方法具有良好的稳态输出特性和非常好的鲁棒性,但该方法在控制上具有一个周期的延迟,因而系统的动态响应较差。自适应重复控制方案,已经成功地应用于逆变器的控制中。

滑模变结构控制

滑模变结构控制利用不连续的开关控制方法来强迫系统的状态变量沿着相平面中某一滑动模态轨迹运动。该控制方法最大的优点是对参数变化和外部干扰的不敏感性,即强鲁棒性,加上其开关特性,特别适用于电力电子系统的闭环控制。但滑模变结构控制存在系统稳态效果不佳、理想滑模切换面难于选取、控制效果受采样率的影响等弱点。如今,逆变电源的滑模变结构控制的研究方兴未艾,特别滑模变控制和其它智能控制策略相结合所构成的符合控制策略的研究倍受关注。

无差拍控制

无差拍控制是一种基于微机实现的PWM方案,它根据逆变电源系统的状态方程和输出反馈信号来计算逆变器的下一个采样周期的脉冲宽度,80年代末引如到正弦波逆变电源控制系统中。对于线性系统来说,该控制方法具有很好的稳态特性和快速的动态响应。其缺点也十分明显:它对系统参数的变化反应灵敏,即鲁棒性较差。一旦系统参数出现较大波动或系统模型建立不准确时,系统将出现很强的震荡。为此,在无差拍控制之中引入智能控制是当今的研究热点之一。

智能控制

智能控制技术主要包括模糊控制、神经网络和专家系统,对于高性能的逆变电源系统,模糊控制器有着以下优点:

具有较强的鲁棒性和自适应性,模糊控制器的设计不需要被控对象的精确数学模型。

查找模糊控制表占用处理器的时间很少,因而可以采用较高采样率来补偿模糊规则的偏差。

模糊控制的优势在于,能够根据不同精度的需求开靠近非线性函数,但相对的,其规则树和分档都收到了一定程度的控制。同事也包含人为控制的因素,所以模糊控制在控制方面的精度仍然有待改善。[6]

相关百科
返回顶部
产品求购 求购