A律

目录导航

概述

A律是ITU-T(国际电联电信标准局)CCITT G.712定义的关于脉冲编码的一种压缩/解压缩算法。 世界上大部分国家采用A律压缩算法。A律是PCM非均匀量化中的一种对数压扩形式,脉冲编码调制PCM是对一个时间连续的模拟信号先抽样,再对样值幅度量化,编码的过程其中量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的 电平,把瞬时抽样值用最接近的电平值来表示,通常是用 二进制表示。而量化中会出现误差,即量化后的信号和抽样信号的差值,量化误差在接收端表现为噪声,称为量化噪声。 量化级数越多误差越小,相应的 二进制码位数越多,要求传输 速率越高,频带越宽。 为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。

令量化器过载电压为1,相当于把输入信号进行归一化,那么A律对数压缩定义为:

当0 <= x <= 1/A时,f(x)=(Ax)/(1+lnA)

当1/A <= x <= 1时,f(x)=(1+lnAx)/(1+lnA)

在现行的国际标准中A=87.6,此时信号很小时(即小信号时),从上式可以看到信号被放大了16倍,这相当于与A压缩率与无压缩特性比较,对于小信号的情况,量化间隔比均匀量化时减小了16倍,因此,量化误差大大降低;而对于大信号的情况例如x=1,量化间隔比均匀量化时增大了5.47倍,量化误差增大了。这样实际上就实现了“压大补小”的效果。

上面只讨论了x>0的范围,实际上x和y均在[-1,1] 之间变化,因此,x和y的对应关系曲线是在第一象限与第三象限奇对称。为了简便,x<0的关系表达式未进行描述,但对上式进行简单的修改就能得到。按上式得到的A律压扩特性是连续曲线,A的取值不同其压扩特性亦不相同,而在电路上实现这样的函数规律是相当复杂的。为此,人们提出了数字压扩技术,其基本思想是这样的:利用大量数字电路形成若干根折线,并用这些折线来近似对数的压扩特性,从而达到压扩的目的。为了便于采用数字电路实现量化,通常采用13折线近似代替A律。

A律十三折线

用折线实现压扩特性,它既不同于均匀量化的直线,又不同于对数压扩特性的光滑曲线。虽然总的来说用折线作压扩持性是非均匀量化,但它既有非均匀(不同折线有不同斜率)量化,又有均匀量化(在同一折线的小范围内)。有两种常用的数字压扩技术,一种是13折线A律压扩,它的特性近似A=87.6的A律压扩特性。另一种是15折线μ律压扩,其特性近似μ=255的μ律压扩特性。

A律压缩表示式是一条连续的平滑曲线,用电子线路很难准确的实现。现在由于数字电路技术的发展,这种特性很容易用数字电路来近似实现,13折线特性就是近似于A压缩律的特性,曲线图如下:

图中横坐标x在0~1区间中分为不均匀的8段。 ~1间的线段称为第8段; ~ 间的线段称为第7段; ~ 间的线段称为第6段;依此类推,直到0~ 间的线段称为第1段。图中纵坐标y则均匀的划分为8段。将这8段相应的坐标点(x,y)相连,就得到了一条折线。 第一步:把x(x>0 部分)划分为不均匀的8段。第一分点取在V/2处,然后每段都是剩下部分的1/2。;依次取第八段为V~V/2,第七段为V/2~V/4;第一段为V/128~0。 第二步:把每段均匀划分为16等份,每一份表示一个量化级,显然8段共16x8=128= 2^7 个量化级,需要二进制7位编码表示。可以看出每个量化级是不均匀的。在小信号的量化台阶很小,使小信号时量化噪声减小。如果按均匀量化计算,以最小台阶 (1/128)*(1/16)为单位,最大信号需用L=128X16=2048= 2^11 个量化级表示,既需要11位编码。这样非均匀编码使小信号量化台阶缩小了16倍,相当于小信号信噪比改善了20dB。 第三步:把y轴均匀划分为8段,每段均匀分为16分。这样y也分为128个量化级,与x轴的128个量化级对应。因此,压扩特性各段的斜率 k=Δy/Δx是不同的。第一段斜率k1=y1/x1=(1/8)/(1/128)=16. 其他段为: k2=16,k3=8,k4=4,k5=2,k6=1,k7-1/2,k8=1/4。 以上分段为x取正值时的情况。而x取负值时,压扩特性与x取正值成奇对称。在正8段和负8段中,正1,2段和负1,2段斜率相同,合为一段。所以原来的16段折线变为13段折线,故又称A律13折线。

相关百科
返回顶部
产品求购 求购