一、外动力地质作用定义
外动力地质作用是指大气、水和生物在太阳能、重力能的影响下产生的动力对地球表层所进行的各种作用统称为外动力地质作用。
二、 外动力地质作用的类型
(一) 风化作用
岩石受外力作用后发生机械崩解和化学分解,破坏产物基本残留原地,使坚硬的岩石变为松散的碎屑及土壤。(化学风化、物理风化、生物风化)
(二) 剥蚀作用
岩石受外力作用而破坏,破坏产物同时被搬走。(侵蚀、刨蚀、潜蚀…….)
(三) 搬运作用
将风化、剥蚀物搬运到它处。(机械搬运、化学搬运、生物搬运)
(四) 沉积作用
搬运物在条件适宜的地方发生沉积,。条件适宜是指搬运能力减弱,如流水搬运泥砂时,流速减小时,动能减少,过载而沉积。化学沉积受化学反应规律支配,过饱和沉积胶体凝胶作用。CACO3+CO2+H2O Ca[HCO3]2
(五) 固结成岩作用
松散沉积物(任何动力搬来的机械的或化学的)转变为坚硬的沉积岩。
沉积物是松散的,颗粒之间富含孔隙和水分,颗粒之间相互无坚密的连接力,
从沉积物 沉积岩经历以不几个阶段:
1. 压固作用
上覆沉积物的重量作用于下部使其压实
(孔隙减少,水分排除,体积减小)。
2. 胶结作用(只发生在碎屑沉积物中)
经压固后的沉积物仍有些孔隙(粒间),由胶结物质充真到孔隙中,使沉
积颗粒胶结在一起变坚硬。
胶结物主要是化学沉淀物:硅质 (SiO2);
铁质 (Fe2O3.nH2O);
钙质 (CaCO3);
(粘土矿物)
不同的化学成分的胶结物坚硬程度不同:硅质铁质 〉钙质泥质
胶结类型可分为:接触式胶结,孔隙式胶结,基底式胶结。
图略
胶结类型不同坚硬程度不同: 接触式胶结〉孔隙式胶结〉基底式胶结
3. 重结晶作用
在化学和生物化学沉积物中,沉积物埋藏后,在新的环境下,受一定温度和压力的影响(T<150°),矿物晶粒在原基础上增生、扩大形成较大晶粒紧密相嵌的过程。(石英、方解石等)。
4. 新矿物生长
沉积物中不稳定矿物在成岩过程中溶解或发生化学变化,形成新的稳定矿物使沉积变坚硬,成岩石作用T<150℃ P<14巴。
经过以上阶段,纵观外动力地质作用的类型。实际上是岩石在地表环境下转变的几个阶段(外动力地质作用的几个阶段),经过这几个阶段后形成了地表环境下稳定的坚硬的沉积岩。沉积岩是外动力地质作用的产物。
在外动力中,流水是极为重要的动力,是沉积物、沉积岩形成的主要场所,因此沉积岩可谓“水成”,相反岩浆岩可谓为“火成”。在地质学发展早期,300多年前,人们对地表岩石的形成曾有过“水成论”与“火成论”的一场论战,持续了三十多年。
“水成论”以德魏尔纳为代表,主张地球上岩石都是水中结晶沉淀的形成的。“火成论”以赫屯(英)为代表,主张地球岩石并非全由水成,主要是熔融岩浆冷凝而成。最终以“火成论”的胜利而告终。
冰川作用 (六)冰川作用
冰川作用包括成冰作用、冰川侵蚀和冰川沉积3个方面。成冰作用指天然降雪→粒雪→冰川冰的变化过程中的密实化、冰晶生长和重结晶作用。是在低温条件下通过雪层自身的压力,排除雪晶和冰晶中的空气,使密度增大而实现的。当雪层密度达到临界值时便转变为粒雪,粒雪层密度达830~840千克/立方时,便成为冰川冰。成冰作用时间的长短和气温成反比,和年积雪量成正比。如南极大陆沿岸,从降雪变为冰川冰,只需数十年至120年;而南极内陆高原,因年降雪量<50毫米,年均气温低达-50℃,成冰时间需500~1000年。但在冰面出现消融的条件下,由于有渗侵冰产生,成冰时间就很短(1年至数年)。冰川侵蚀包括冰川刨蚀(磨蚀)和挖掘。冰川体一方面有巨大的压力(100米厚的冰体,冰床基岩所受的静
冰川作用
压力为90吨/平方),一方面是运动的(运动速度与冰床坡度成正比),故挟带岩石碎块的冰川对冰床和谷壁有很强的侵蚀作用。对一个突起的岩丘,其迎冰面以刨蚀(磨蚀)为主,背冰面以挖掘作用为主,形成羊背石。刨蚀作用造成擦痕、刻槽和磨光面等冰蚀地貌形态,同时产生大量碎屑物质,即冰川乳或冰川粉。挖掘作用形成冰床阶梯和岩坎,为冰川补充冰碛岩块。对于冰川地貌的塑造挖掘作用大于刨蚀作用。冰川沉积作用指冰川停滞或后退时冰碛物的堆积过程。冰川流属于块体运动,故冰碛物与其它任何外营力搬运的沉积物明显不同,除非经后期冰川或冰水侵蚀,冰碛地貌(如终碛垅、侧碛垅、表碛丘陵、冰碛台地、底碛丘陵和平原、鼓丘等)将会保存较长时期。冰川沉积作用的强弱,与冰川类型、运动速度及挟带岩屑的多少直接相关。海洋性冰川的运动速度快,侵蚀能力强,挟带岩屑多,冰川沉积作用就强,冰碛地貌的规模也大;反之,大陆性冰川的沉积作用较弱,冰碛地貌的规模较小。凡有冰川作用的地区,冰川侵蚀与冰川沉积都是同时发生的,故在研究识别古冰川作用时,必须同时注意观察冰川侵蚀地貌和冰川堆积地貌,并找出它们的内在联系。