磁敏电阻是一种基于磁阻效应而制作的电阻体。它在外施磁场的作用下(包括外施磁场的强度及方向的变化)能够改变自身的阻值,是一种新颖的传感元件。它可分为半导体磁敏及强磁性金属薄膜磁敏电阻两大类。[1]
磁场作用在导体上的各种物理效应(霍尔效应、磁阻效应)早在1879~1883年间在金属中就发现了,但因效应不显著,长期以来未得到广泛应用。半导体出现后,在20世纪50年代后半期开发了高迁移率的新型化合物半导体材料,如锑化铟(InSb)等,也促进了霍耳器件和磁阻器件的研究、开发和应用。[2]
半导体磁敏电阻的研制始于6 0年代初,在这方面联邦德国西门子公司较为权威,继而是日本、美国、苏联、西欧等国。在60年代中期即有商品销售,因其和普通电阻一样,具有两个端子、结构简单、灵敏度高、安装方便等优点,其应用较为普遍。
强磁性金属薄膜磁敏电阻是用强磁性合金材料制成的一种薄膜型的磁敏电阴器件,其作用原理是强磁性体的磁阻效应,它和半导体磁敏电阻不同,除对磁场的强度敏感(和半导体磁敏电阻相同点)外,对磁场的方向也十分敏感(和半导体磁敏电阻不同点)。由于薄膜不是半导体材料而是强磁性体合金,因此具有较小的温度系数,且性能较为稳定、灵敏度高,现已商品化和实用化。
强磁性金属薄膜磁敏电阻是日本索尼公司于70年代初开发的一种磁敏器件,它在问世后十几年的时间中,发展十分迅速。可以用它构成许多新型磁敏传感器用于测量微位移、角度、转速、流量、压力等。[1]
磁敏材料能通过磁阻效应将磁信号转换成电信号。磁阻效应包括材料的电阻率随磁场而变化和元件电阻值随磁场而变化两种现象。前者称磁电阻率效应或物理磁阻效应,后者称为磁电阻效应或几何磁阻效应。[2]
磁敏电阻材料主要是电子迁移率大的半导体材料,还有铁镍钴合金。常用的半导体有InSb(或InSb-NiSb共晶材料)、砷化铟(InAs)和砷化镓(GaAs)等材料,一般用N型。
高纯度InSb和InAs的电子迁移率分别为5.6~6.5 m/(V·s)和2.0~2.5m/(V·s)。InSb的禁带宽度小,受温度影响大。GaAs的禁带宽度大,电子迁移率也相当大[0.8 m/(V·s)],受温度影响小,且灵敏度也高。
镍钴合金和镍铁合金的电阻温度系数小,性能稳定,灵敏度高,且具有方向性,可制作强磁性磁阻器件,用于磁阻的检测等方面。
用半导体材料制作的磁敏电阻器、无触点电位器、模拟运算器和磁传感器等应用于测量、计算机、无线电和自动控制等方面。半导体InSb-NiSb磁敏电阻器用于磁场、电流、位移和功率测量及模拟运算器等方面,其阻值为10Ω~1kΩ,相对灵敏度6~18 (B=1 T),温度系数-2.9%~0.09% (1/℃) (B=1 T),极限工作频率1~10 MHz。在测量小于0.01T的弱磁场时,必须附加以偏置磁场才能进行。
Ni-Co薄膜磁敏电阻器主要用于探测磁场方向、磁带位置检测、测量和控制转速或速度以及无触点开关等方面。阻值有1、10、250kΩ,相对灵敏度2%以上(3×10T下),温度系数3000±500×10(1/℃),感应磁场3×10T以上,工作温度-55~150℃。在检测磁场反转或可逆磁场以下的磁信号时,也应采用偏置磁场。[2]
半导体磁敏电阻[1]
图1 半导体磁敏电阻构造通常半导体磁敏电阻是由基片、半导体电阻条(内含短路条)和引线三个主要部分组成的。基片又叫衬底,一般是用0.1~ 0.5mm厚的云母、玻璃作成的薄片,也有使用陶瓷或经氧化处理过的硅片作基片的。电阻条一般是用锑化锢(InSb)或砷化铟(InAs)等半导体材料制成的半导体磁敏电阻条,在制造过程中,为了提高磁敏电阻的阻值,缩小其体积、提高灵敏度常把它作成如图1所示的结构。
半导体材料的电阻率 ρ 随外磁场强度变化而变化的现象叫作半导体的物理磁阻效应或叫作磁阻率效应。这是由于在外施磁场的作用下,流经半导体磁敏电阻的载流子受洛仑兹力的作用使其流动路径发生偏斜,从而造成它从一个电极流到另一个电极所流过的途经(即载流子运动的轨迹)要比无磁场作用时所通过的途经要长,故其电阻值增大。我们把载流子在磁场作用下的平均偏斜角度 θ 叫作平均霍尔角。它与外施磁场及载流有如下关系:
式中为电子迁移率; B为外施磁场的磁感应强度。从式(1 )可以看出:半导体磁敏电阻材料的载流子迁移率越大,其偏斜的平均霍尔角就越大,电阻的变化就越大。这种电阻的变化和磁场强度的关系大致可以认为:在弱磁场的作用下,半导体磁敏电阻的相对变化率R/R0与所施磁场的磁感应强度B的平方成正比;而在强磁场的作用下,半导体磁敏电阻的相对变化率ΔR/ R0则与所施磁场的磁感应强度B成正比。
强磁性金属薄膜磁敏电阻[1]
图2 强磁性金属薄膜磁敏电阻构造强磁性金属薄膜磁敏电阻器件的结构如图2所示,和半导体磁敏电阻一样,它也是由基片、强磁性金属薄膜的电阻体和内外引线三部分组成的。基片一般是用厚为0.1~ 0.5mm的玻璃片、高频陶瓷片或经氧化处理的硅片制成;电阻体通常是采用半导体平面工艺中的真空镀膜(或溅射)、光刻、腐蚀工艺而制成的;内引线是用硅铝丝或金丝采用超声压焊或金丝球焊而焊接的,外引线是用非磁性的铜片等材料焊接的。
1)磁阻比:指在某一规定的磁感应强度下,磁敏电阻器的阻值与零磁感应强度下的阻值之比。
2)磁阻系数:指在某一规定的磁感应强度下,磁敏电阻器的阻值与其标称阻值之比。
3)磁阻灵敏度:指在某一规定的磁感应强度下,磁敏电阻器的电阻值随磁感应强度的相对变化率。
磁敏电阻几何磁阻效应是指半导体材料磁阻效应,与半导磁敏电阻的用途颇广,这里将简要介绍以下应用。
1. 作控制元件
可将磁敏电阻用于交流变换器、频率变换器、功率电压变换器、磁通密度电压变换器和位移电压变换器等等。
2.作计量元件
可将磁敏电阻用于磁场强度测量、位移测量、频率测量和功率因数测量等诸多方面。
3.作模拟元件
可在非线性模拟、平方模拟、立方模拟、三次代数式模拟和负阻抗模拟等方面使用。
4.作运算器
可用磁敏电阻在乘法器、除法器、平方器、开平方器、立方器和开立方器等方面使用。
5.作开关电路
可应用在在接近开关、磁卡文字识别和磁电编码器等方面。
6.作磁敏传感器
用磁敏电阻作核心元件的各种磁敏传感器,其工作原理都是相同的,只是根据用途、结构不同而种类各异。主要有:
① 测磁传感器。如新型磁通表,测定恒定磁场 及交变磁场或电机电器等剩磁的仪器,用于航海、 航空的导航仪器。
② 转速传感器。如构成新型 的数字式转速表、频率计等。
③ 位移和角位移传感器。微位移传感器是工业用机器人的基本器件。
④ 铁磁物质探伤用的传感器。
⑤ 可变电阻器、无接触电位器以及无触点、高性能的磁开关(作定位及控制用)。
磁敏电阻和电子元件配合可以构成振荡器、乘法器、函数发生器、调制器、 交直流变换器和倍频器等,还可用来鉴别磁性 油墨印的纸币和票证的真伪。[3]