调谐质块阻尼器

调谐质块阻尼器

中文名 调谐质块阻尼器
运作 钟摆形式
目录导航

概述

调谐质块阻尼器(tuned mass damper) 主要是安放在建筑物的较高层位置,是钟摆形式运作。Damper是一个大约数百吨重的混凝土块, 四边用弹簧连接,当有外力传于建筑物,建筑物的摆动会将能量传到damper,令damper同时摆动。经过计算的damper会产生相反的摆动,这相反的摆动刚好与建筑物的摆动不同,所以可令建筑物本身的摆动减少,不少摩天大楼都应用这系统建筑技术 。

构造

调谐质量阻尼器(TMD)由质块,弹簧与阻尼系统组成。既由将其振动频率调整至主结构频率附近,改变结构共振特性,以达到减震作用。

目的

将调谐质量阻尼器(TMD)装入结构的目的是减少在外力作用F基本结构构件的消能要求值。在该情况下,这种减小是通过将结构振动的一些能量传递给以最简单的形式固定或连接在主要结构的辅助质量—弹簧—阻尼筒系统构成的TMD来完成的。

起源

TMD结构应用的现代思想的最早来源是早在1909年Frahm(Frahm,1909;Den Hartog,1 956)研究的动力吸震器。它由一个小质量m和一个刚度为A的弹簧连接于弹簧刚度为K的主质量M。在简谐荷载作用下,可显示出当所连接的吸振器的固有频率被确定为(或调谐为)激励频率时,主质量M能保持完全静止。

Den Hartog(Ormondroyd and Den Hartog,1928)最早研究了主系统中没有阻尼时的无阻尼和有阻尼动力吸振器理论,他们提出了吸振器的基本原理及确定适当参数的过程。主系统的阻尼包含在Bishop和Welboun(1952)提出的动力吸振器的分析中。紧接在上述工作之后,Falcon等(1967)设计了一个优化过程以获得主系统的最小峰值响应和最大有效阻尼。

Jennlge和Frohrib(1977)数值计算厂控制建筑物结构中弯曲和扭转模式的移动—转动吸振器系统。Ioi和Ikeda(1978)提出了主系统在小阻尼情况下这些优化吸振器参数修正因子的经验公式。Randall等(1981)提山了在系统中考虑阻尼影响的这些参数的设计图表。Warburton和Ayorinde(1 980)进一步用表列出了最大动力放大因子、调谐频率比及特定质量比和主系统阻尼比的吸振器阻尼比的优化值。

为了增强用于减小主系统最大动力响应的吸振器的效果,研究者们尝试了通过引入非线性吸振器弹簧来加宽调谐频率范围,Roberson(1962)研究了将动力吸振器支承于一个没有阻尼的线性加三次方弹簧(即Duffing型弹簧)之上的主系统的动力响应。他将“消除带”定义为规格化主系统幅值小于1的共振峰值之间的频率带。非线性吸振器的这个带宽很清楚地表明了比线性吸振器要宽得多,Pipes(1953)研究了一个有双曲正弦特征的强化弹簧,并得出弹簧中非线性的影响是要阻止尖锐共振峰的出现,并将相对小幅值的奇次谐分量引入吸振器和主系统的运动中。

为了改进动力吸振器的性能,Snowdon(1960)研究了固体型吸振器对减小主系统响应的性能,表明采用刚度正比于频率和恒定阻尼系数材料的动力吸振器能显著减小主系统的共振振动,其性能明显优于弹簧—阻尼筒型吸振器。Srinivasan(1969)分析了平行阻尼动力吸振器,即一个辅助无阻尼质量平行加装于一个吸振器。在这种情况下,当阻尼频率被精确调谐到激励频率时,主系统将保持静止,但在该情况下,消除带变小了。Snowdon(1974)研究了其他可能的吸振器形式,如三—单元吸振器的,显示如果第三单元(即辅助弹簧)与阻尼器串联,主系统幅值能减小15%~30%,但这种减小对频率非常敏感,在实际中它将影响吸振器的性能。

许多早期研究局限于动力吸振器在工作频率与基本频率相协调的机械工程系统中的应用。但建筑结构所受到的如风和地震的环境荷载的作用具有许多频率分量,而通常叫做调谐质量阻尼器(TMD)的动力吸振器在复杂多自度和有阻尼建筑结构中的性能是不一样的。在过去20多年中,许多研究与开发工作因此而定位于研究TMD在这种振动环境中的效果。

工作原理

风对高层建筑的影响有多大?一般说,在正常的风压状态下,距地面高度为10米处,如风速为5米/秒,那么在90米的高空,风速可达到15米/秒。若高达300-400米,风力将更加强大,即风速达到30米/秒以上时,摩天大楼会产生晃动。 纽约世贸中心在春季刮风时,通常摇晃偏离中心6-12英寸(15-30厘米),在强飓风作用下,位移可达3英尺(1英尺约等于30厘米),设计按最大风力下的最大偏离为4英尺。

为了减少强风对建筑物的影响,防止高空强风及台风吹拂造成的摇晃,高层建筑通常会安装调谐质块阻尼器(tuned mass damper,又称调质阻尼器)。 调谐质块阻尼器通电后,一旦建筑物因强风产生的摇晃可以通过传感器传至风阻尼器,此时风阻尼器的驱动装置会控制配重物的动作进而降低建筑物的摇晃程度。如果强风从北面刮来,钢球就好比一个巨大的‘钟摆’摆向北面,使风阻尼器会产生一种与风向相反的‘力量’,从而‘消化’建筑物的摇晃程度。

应用了该技术的大厦

台北101大厦

台北101大厦在87~92楼安装了世界上目前最大的大楼风阻尼器 ,本身重量660公吨,系统总重量730公吨,由四十一层12.5公分厚钢板结合为球形,直径5.5公尺,总造价约三千万人民币,可以减少因地震、风吹或大猩猩爬在大楼上面摇晃所引起的摆幅40%

上海全球金融中心

上海全球金融中心,为中国首次使用该类装置的高层建筑,设计师在大楼90层、395米高处设立了2台风阻尼器。在测试中,当大楼双向摇摆达到5厘米时,阻尼器启动止振,止振时间仅需15秒。该装置使用传感器探测强风时建筑物的摇晃程度,通过计算机控制重约150吨的“大铁块”摇摆,以抑制建筑物由于强风引起的摇晃。

相关百科
返回顶部
产品求购 求购