arima模型(3)对时间序列数据进行分析和预测比较完善和精确的算法是博克思-詹金斯(Box-Jenkins)方法,其常用模型包括:自回归模型(AR模型)、滑动平均模型(MA模型)、(自回归-滑动平均混合模型)ARMA模型、(差分整合移动平均自回归模型)ARIMA模型。
ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展。ARIMA(p,d,q)模型可以表示为:
其中L是滞后算子(Lag operator),
非平稳时间序列,在消去其局部水平或者趋势之后,其显示出一定的同质性,也就是说,此时序列的某些部分 与其它部分很相似。这种非平稳时间序列经过差分处理后可以转换为平稳时间序列,那 称这样的时间序列为齐次非平稳时间序列,其中差分的次数就是齐次的阶。
将记为差分算子,那么有
对于延迟算子,有
因此可以得出
设有d阶其次非平稳时间序列,那么有是平稳时间序列,则可以设其为ARMA(p,q)模型,即
其中,分别为自回归系数多项式和滑动平均系数多项式。为零均值白噪声序列。可以称所设模型为自回归求和滑动平均模型,记为ARIMA(p,d,q)。
当差分阶数d为0时,ARIMA模型就等同于ARMA模型,即这两种模型的差别就是差分阶数d是否等于零,也就是序列是否平稳,ARIMA模型对应着非平稳时间序列, ARMA模型对应着平稳时间序列。