对于且,有
法一:若有对数,设,。
则根据对数的基本公式和及,可得
则有
证毕。
法二:若有对数,则,且
于是
两边取以c为底的对数得,,即。
证毕。
法三:若有对数,则,且,于是
即
从而
证毕。[2]
下面给出若干推论。由换底公式,易知
在高等数学中有一种求导方法叫对数求导法,其原理就是指数函数的换底,把底为普通常数或变量的指数函数或幂指函数统统都变形为以e为底的复合函数形式。
这些都可以很容易地由对数换底公式及推论得到。
通常在处理数学运算中,将一般底数转换为以e为底的自然对数或者是转换为以10为底的常用对数,方便运算;有时也通过用换底公式来证明或求解相关问题;
在计算器上计算对数时需要用到这个公式。例如,大多数计算器有自然对数和常用对数的按钮,但却没有[log2]的。要计算,你只有计算(或,两者结果一样);
在工程技术中,换底公式也是经常用到的公式。
例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数,只有以常用对数(即以10为底的对数)或自然对数(即e为底的对数)。此时就要用到换底公式来换成以e或者10为底的对数,表示出以a为底b为真数的对数表达式,从而处理某些实际问题。