F检验

F检验

目录导航

计算

样本标准偏差的平方,即:

S2=∑(-)2/(n-1)

两组数据就能得到两个S2值

F=S2/S2'

然后计算的F值与查表得到的F表值比较,如果

F < F表表明两组数据没有显著差异;

F ≥ F表表明两组数据存在显著差异。

表格

置信度95%时F值(单边)

f大f小 2 3 4 5 6 7 8 9 10
2345678910∞ 19.09.556.945.795.144.744.464.264.103.00 19.169.286.595.414.764.354.073.863.713.60 19.259.126.395.194.534.123.843.633.482.37 19.309.016.265.054.393.973.693.483.333.21 19.338.946.164.954.283.873.583.373.222.10 19.368.886.094.884.213.793.503.293.142.01 19.378.846.044.824.513.733.443.233.071.94 19.388.816.004.784.103.683.393.183.021.88 19.398.785.964.744.063.633.343.132.971.83 19.58.535.634.363.673.232.932.712.541.00

横向为大方差数据的自由度;纵向为小方差数据的自由度。

适用场合

f大f小 2 3 4 5 6 7 8 9 10
2345678910∞ 19.09.556.945.795.144.744.464.264.103.00 19.169.286.595.414.764.354.073.863.713.60 19.259.126.395.194.534.123.843.633.482.37 19.309.016.265.054.393.973.693.483.333.21 19.338.946.164.954.283.873.583.373.222.10 19.368.886.094.884.213.793.503.293.142.01 19.378.846.044.824.513.733.443.233.071.94 19.388.816.004.784.103.683.393.183.021.88 19.398.785.964.744.063.633.343.132.971.83 19.58.535.634.363.673.232.932.712.541.00

注意事项

通常的F检验例子包括:

  • 假设一系列服从正态分布的母体,都有相同的标准差。这是最典型的F检验,该检验在方差分析(ANOVA)中也非常重要。
  • 假设一个回归模型很好地符合其数据集要求。

关系

F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。 F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。

若两个母体有相同的方差(方差齐性),那么可以采用F检验,但是该检验会呈现极端的非稳健性和非常态性,可以用t检验、巴特勒特检验等取代。

相关百科
返回顶部
产品求购 求购