黄金分割定律

中文名 黄金分割定律
提出者 毕达哥拉斯
应用学科 数学
目录导航

发现历史

  

  由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

  公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

  公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

  中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。

  到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

  ________________________

  |

  a b

  a:b=(a+b):a

  通常用希腊字母Ф表示这个值。

  黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。

  确切值为(√5-1)/2

  黄金分割数是无理数,前面的1024位为:

  0.6180339887 4989484820 4586834365 6381177203 0917980576

  2862135448 6227052604 6281890244 9707207204 1893911374

  8475408807 5386891752 1266338622 2353693179 3180060766

  7263544333 8908659593 9582905638 3226613199 2829026788

  0675208766 8925017116 9620703222 1043216269 5486262963

  1361443814 9758701220 3408058879 5445474924 6185695364

  8644492410 4432077134 4947049565 8467885098 7433944221

  2544877066 4780915884 6074998871 2400765217 0575179788

  3416625624 9407589069 7040002812 1042762177 1117778053

  1531714101 1704666599 1466979873 1761356006 7087480710

  1317952368 9427521948 4353056783 0022878569 9782977834

  7845878228 9110976250 0302696156 1700250464 3382437764

  8610283831 2683303724 2926752631 1653392473 1671112115

  8818638513 3162038400 5222165791 2866752946 5490681131

  7159934323 5973494985 0904094762 1322298101 7261070596

  1164562990 9816290555 2085247903 5240602017 2799747175

  3427775927 7862561943 2082750513 1218156285 5122248093

  9471234145 1702237358 0577278616 0086883829 5230459264

  7878017889 9219902707 7690389532 1968198615 1437803149

  9741106926 0886742962 2675756052 3172777520 3536139362

  1076738937 6455606060 5922...基本内容

黄金分割律又称黄金率。技术分析专家将该定律引用到股市、汇市和期货市场,来探讨价位变动的高低点,准确性相当高,所以沿用至今。

  黄金分割律最基本的公式,就是将1分割为0.618和0.382,然后再根据实际情况的变化,演变到其它的计算公式。当空头市场结束,多头市场来临时,投资人最关心的问题是“顶”在哪里?事实上,影响汇价变动的因素很多,想要准确地掌握上升行情的最高点是不可能的。投资人可以做的是依照黄金分割律计算可能出现的汇价反转点即压力点,作为操作时的参考数据。

  当汇价上涨脱离低价位时,参考其它技术指标如均价线系统、 K线、慢步与快步随机指标等,从上升的速度与持久性来分析,并依照黄金分割律,它的涨势可能在上涨幅度接近或达到或超过0.382与0.618时发生变化。也就是说,当上升到接近或达到或超过38.2%或者61.8%时就会出现反压,有结束上升行情开始反转下跌的可能。

  黄金分割律除了固定的0.382和0.618是上涨幅度的压力点以外,其间也有一半的压力点,而且0.382的一半0.191也是很重要的依据。因此,当上升行情展开,需要预先定下汇价上升的能力与可能反转的价位随时作好操作的准备时,可将前一阶段下跌行情的最低点乘以0.191、0.382、0.618和1;当汇价上涨幅度超过一倍时,它的反压点则是1.191、1.382、1.618、1.809和2;依此类推。当多头市场结束,空头市场展开时,投资人最关心的“底”在哪里,也同样可以用黄金分割律的方法进行支撑点的预测、计算并作好逢低买入的准备。

生活应用

  

  有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

  建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。

  数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。

  

618与战争

  0.618与战略战役

  0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。

  也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?

  0.618与武器装备

  在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。

  当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。

  实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。

  在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与0.618十分接近。在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。

   0.618与战术布阵

  在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。其主要攻击点的选择,恰在黄金分割点上。

  把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。或许还有别的更为重要的原因?仔细研究之下,果然又从中发现了黄金分割律的伟大作用。蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。

  马其顿与波斯的阿贝拉之战,是欧洲人将0.618用于战争中的一个比较成功的范例。在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。这一战争的深刻影响直到今天仍清晰可见, 在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。

  两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。让我们以海湾战争为例。战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了0.618,也就是说,他多多少少托了黄金分割律的福。

  此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。

  拿破仑大帝败于黄金分割线?

  0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。

  一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。

  1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。

证明方法

  

  设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为b

  AC/AB=BC/AC

  b^2=a×(a-b)

  b^2=a^2-ab

  a^2-ab+(1/4)b^2=(5/4)×b^2

  (a-b/2)^2=(5/4)b^2

  a-b/2=(√5/2)×b

  a-b/2=(√5)b/2

  a=b/2+(√5)b/2

  a=b(√5+1)/2

  b/a=(√5-1)/2

线段的黄金分割尺规作图

  

  1.设已知线段为AB,过点B作BC⊥AB,且BC=AB/2;

  2.连结AC;

  3.以C为圆心,CB为半径作弧,交AC于D;

  4.以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。

   事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边与一点,过这个点,作一条直线垂直于较长边,这时,生成的新矩形(不是那个正方形)仍然是一个黄金矩形,这个操作可以无限重复,产生无数个黄金矩形。

  古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目

  令人惊讶的是,人体自身也和0.618密切相关,对人体解剖很有研究的意大利画家达·芬奇发现,人的肚脐位于身长的0.618处;咽喉位于肚脐与头顶长度的0.618处;肘关节位于肩关节与指头长度的0.618处,人体存在着肚脐、咽喉、膝盖、肘关节四个黄金分割点,它们也是人赖以生存的四处要害。

相关百科
返回顶部
产品求购 求购