影像地图是以航空或卫星遥感影像直接反映地表状况的地图。其影像通常是经过纠正了的正射像片,叠
加在影像之上的符号和注记是按照一定的原则选用的。影像地图按其内容可以分为普通影像地图和专题影像地图两类。 影像是传输空间地理信息的主体,从影像上容易识别的地物不用符号表示,直接由影像显示;只有那些影像不能显示或识别有困难的内容,在必要的情况下以符号或注记的方式予以表示。和普通线划地图相比,影像地图具有鲜明的特点:一是以丰富的影像细节去表现区域的地理外貌,比单纯使用线划的地图信息量丰富,真实直观、生动形象,富于表现力。二是用简单的线划符号和注记表示影像无法显示或需要计算的地物,弥补了单纯用影像表现地物的不足,因而减少了制图工作量,缩短了地图的成图周期。
正是这种特殊的信息传输方式,赋予了影像地图以独特的可视化效果,从而使影像地图在反映区域概貌,进行区域总体规划方面具有重要作用。
由于地表自然地理特征千差万别,影像地图在制作技术、表现形式、规范化、标准化方面尚在探索和试验中,主要应用于各种资源调查与专题制图。随着计算机辅助制图的发展以及航天摄影测量的实用化,影像地图作为一种“影像地图化”方向和产品,势必得到迅速发展和广泛利用。除以上特点它还具有一下特点①它是既具有立体效应的丰富影像信息,又有一定地图精度的组合图型。这种形象逼真的影像地图,具有影像和地图的双重作用。②地面信息丰富,内容层次分明,图面清晰易读。③简化和革新了地图编制工艺,改善了制图条件,加快了成图速度,缩短制图周期,是现代地理制图自动化的一个新途径。④遥感资料周期快、现势性强,是开展多时相遥感数据或多种信息源复合研究,建立地学编码影像数据库的重要基础。
影像地图的发展与航空摄影、航空测量技术、航天技术发展息息相关。航空摄影测量经历了从30年代模拟测量到70年代的解析摄影测量;80年代末数字摄影测量,发展到当今的全数字化摄影测量阶段。核心技术得益于计算机技术、通讯技术、航空(天)遥感技术和数字图像理论技术的发展,由于“3S”(GPS、RS、GIS技术)高科技术的渗入,使得影像地图充满传奇般绚丽色彩。现代影像地图的概念较初期有了明显不同。由平面走向立体,由立体走向可视动画(漫游)配以多媒体,前景广阔。在我国,随着数字摄影测量技术的不断发展,可以预计今后,正射影像地图将很快得到普及应用,可广泛应用于现代国防军事、农业可持续发展、精细农业、防灾减灾、城乡建设与环境保护、重大基本建设工程、林业防护、交通指挥、土地规划利用、国土资源勘查等等领域。
影像地图依据遥感资料的不同,分为航空影像地图和卫星影像地图;按地图的性质,分为专题影像地图
和普通影像地图;按分幅的形式,分为单张影像地图、单幅区域影像地图和标准分幅影像地图;按出版的颜色分为黑白影像地图和彩色影像地图;按成图制印的方法,分成光学合成影像地图和制印合成影像地图等。
影像地图按其内容可以分为普通影像地图和专题影像地图两类。
普通影像地图是综合了遥感影像和地形图的特点,在影像的基础上叠加了等高线、境界线、沟渠、道路、高程注记等内容,以需求的不同,可以制成黑白、彩色、单波段和多波段合成的影像地图。按遥感资料的性质,又可分为航空影像地图和卫星影像地图两种。前者的比例尺较大,影像分辨率高,适用于工程设计、地籍管理、区域规划、城市建设以及区域地理调查研究和编制大比例尺专题地图;后者是由陆地卫星多光谱扫描仪扫描获得的MSS4、MSS5 MSS6、 MSS7等波段的影像经纠正后编制的,属于中小比例尺影像地图,区域总体概念清晰,有利于大范围的分析研究,适用于研究制图区域全貌、大地构造系统区域地貌、植被分布、制定工农业总体规划,进行资源调查与专题制图等。
专题影像地图是以影像地图作基础底图,通过解译并加绘有专题要素位置、轮廓界线和少量注记制成的一种影像地图。因像片上有丰富的影像细节,专题要素又以影像作背景,两者可以相互印证,又不需要编制地理底图,因而具有工效高、质量好等优点,是有发展前途的一种新型地图。
目前代表影像地图制作技术发展趋势的一些新型影像地图已经问世:
电子影像地图 这种影像地图以数字形式存贮在磁盘、光盘或磁带等存贮介质上,需要时可由电子计算机的输出设备(如绘图机、显示屏幕等)恢复为影像地图。与传统的影象地图相比,它保留了影像地图的基本特征如数学基础、图例、符号、色彩等,只是载负影像地图信息的介质不同。
多媒体影像地图 是电子地图的进一步发展。传统的影像地图主要给人提供视觉信息,多媒体影像地图则增加了声音和触摸功能,用户可以通过触摸屏,甚至是声音来对多媒体影像地图进行操作,系统可以将用户选择的影像区域放大,直观形象的影像信息再配以生动的解说,使影像地图信息的传输和表达更加有效。
立体全息影像地图 这种影像地图利用从不同角度摄影获取的区域重叠的两张影像,构成像对,阅读时,需戴上偏振滤光眼镜,使重建光束正交偏振,将左右两幅影像分开,使左眼看左面影像,右眼看右边影像,利用人的生理视差,就可以看到立体全息影像。