闭合铁芯(或一大块导体)处于交变磁场中,交变的磁通量使闭合铁芯(或一大块导体)中产生感应电流,形成涡电流。
假如铁芯(或导体)是纯铁(纯金属)的,则由于电阻很小,产生的涡电流很大,电流的热效应可以是铁(或金属)的温度达到很高的,甚至是铁(或金属)的熔点,使铁熔化。
大块导体处在变化磁场中,或者相对于磁场运动时,在导体内部也会产生感应电流。这些感应电流在大块导体内的电流流线呈闭合的涡旋状,被称为涡电流或涡流( eddy current )。由于大块金属的电阻很小,因此涡流可达非常大的强度。人们正是依据这个特点来考虑涡流的利用与防治。
若在金属圆柱体上绕一线圈,当线圈中通入交变电流时,金属圆柱体便处在交变磁场中。设想金属圆柱体由一系列不同半径的圆柱形薄壳所构成,每层金属薄壳就是一个闭合回路,在交变磁场中有感应电流流通。这些感应电流在金属圆柱体内汇集出强大的涡流,释放出大量的焦耳热,可使金属自身熔化。这就是 高频感应炉 冶炼金属的原理。
涡流检测适用于导电材料探伤,常见的金属材料可分为两大类:非铁磁性材料和铁磁性材料。前者为铜、铝、钛及其合金和奥氏体不锈钢;后者为钢、铁及其合金。它们的本质差别是材质磁导率μ约为1或远大于1 。
在发电厂,除復水器等少量管道使用铜、钛、奥氏体不锈钢非铁磁性材料外,大量管道都采用钢管等铁磁性材料,典型的应用有省煤器、水冷壁等。常规涡流探伤应用于非铁磁性管子,已是非常成熟的技术,它不单能探测出缺陷,并可以利用阻抗平面技术分析出缺陷所在的位置与深度。然而,将它简单地应用于铁磁性材料的钢管,却得不到预期的结果,其原因何在?
这是由于铁磁性材料μ>>1,根据涡流标准渗透公式:δ=503.3/√fμrσ 可知在这种情况下,涡流只能集中在表面,无法渗透到材料的内部。除此以外,铁磁性材料的磁畴结构,将对涡流检测信号产生极大的干扰,足以把缺陷信号完全淹没,而无法得到有用的信息。
克服铁磁性金属磁导率对探伤影响的方法有两种:其一,采用远场涡流检测方法;其二,对钢管进行饱和磁化后再探伤。前一种方法需要更新仪器,后一种方法只需在原有常规仪器的基础上增加磁饱和装置即可对钢管等进行探伤,具有投资少的优点。经过磁饱和处理后的铁磁性材料可以以非铁磁材料对待。通常钢管涡流探伤采用通过式磁饱和器。它是由通有直流电的线圈来产生稳恒强磁场,并借助于导套等高导磁部件将磁场疏导到被检测钢管的探伤部位,使之达到磁饱和状态。为了充分利用线圈产生的磁场,装置一般都有由铁磁性材料(如纯铁)制作的外壳。由于纯铁的μ值很大,磁阻很小,泄漏在空间中的磁力线会被铁壳收集,也被疏导到钢管的检测部位。由于强大的磁化电流通过磁饱和器线圈,会使线圈发热,因此要有良好导热措施,以防线圈烧毁。磁饱和装置除了用来产生强大的直流磁场外,检测线圈也常常用它来夹持,所以磁饱和装置的结构与检测线圈的外形有着密切关系。在穿过式涡流探伤中,磁饱和装置中的导套与检测线圈必须保持同心,否则会造成较大的周向灵敏度差,导致漏检和误检。
磁饱和涡流探伤方法应使检测线圈附近的磁通密度达到使钢管饱和磁化所需磁通密度的80%以上。为此,探伤前应根据钢管的材质和规格选择磁化电流。磁化电流的选择通常也是在通过对比试样的状态下进行。从理论上讲,选择前应首先计算出所检测钢管达到饱和磁化所需的磁通密度,然后按上述要求调整磁化电流,此种方法要进行繁琐的计算。在实际操作中,可采用简便的调整方法,即在往返通过对比试样中,随着逐步增大磁化电流的同时,观察仪器显示的噪声信号和人工缺陷信号的变化。当噪声信号最小,人工缺陷信号最大时,磁化电流即为基本合适。按一般规律,口径越大,壁厚越厚,材料磁特性越软,所需磁化电流就越大,反之则越小
EM系列磁饱和装置是专门设计用于流动场合的钢管涡流探伤。它由磁饱和器和磁化恒流电源构成。常规的磁饱和器由磁化线圈和铁构件组成,体积大且重量重,适合用在制造钢管的工厂固定场所使用,这种情况下,磁饱和装置无需移动,体积和重量均不必考虑,因此可采用普通材料制作,以降低成本。而对发电厂、石化厂等使用钢管的用户,钢管涡流探伤通常是在流动现场,而不是在车间,为便于使用和移动,装置必须轻便、高效。对此专门设计了EM系列磁饱和装置,采用了合理的紧凑设计,高导磁率材料和精心加工,大大提高了装置的磁化效率,使重量仅为一般装置的40%,体积较少一半。除此之外,磁化电源选用稳压恒流电源,它能很好地避免电压变化或磁化线圈发热引起电阻变大而改变磁化电流的弊病。
利用足够大的电力在 导体中产生很大的 涡流,导体中电流可以发热,使金属受热甚至熔化。所以制造了 感应炉,用来冶炼金属。在感应炉中,有产生 高频电流的大功率电源和产生交变磁场的线圈,线圈的中间放置一个 耐火材料(例如陶瓷)制成的坩埚,用来放有待熔化的金属。涡流感应加热的应用很广泛,如用高频感应炉冶炼金属,用高频塑料 热压机过塑,以及把涡流热疗系统用于治疗, 金属材料学中常用于 感应淬火、感应退火等方法来提高工件的 表面硬度与 耐磨性。 感应加热的优点:1.非接触式加热,热源和受热物件可以不直接接触 2.加热效率高,速度快,可以减少表面氧化现象 3.容易控制温度,提高加工精度 4.可实现局部加热 5.可实现 自动化控制 6.可减少占地、 热辐射、噪声和灰尘钢盘在蹄型磁铁的磁场中转动,会在钢盘中激起涡流,涡流在与磁场相互作用产生一个动态阻尼力,从而提供制动动力矩。这种制动方式常应用于电表的阻尼制动、高速机车制动的涡流闸等
涡流 金属探测器有一个流过一定频率交变电流的探测 线圈,该线圈产生的交变磁场在金属物中激起涡流,隐蔽金属物的 等效电阻、电感也会反射到探测线圈中,改变通过探测线圈电流的大小和相位,从而探知 金属物。涡流金属探测器可用于探测行李包中的枪支、埋于地表的地雷、金属 覆盖膜厚度等 当然,在生产和生活中,有时也要避免涡流效应。如电机、变压器的 铁芯在工作时会产生涡流,增加能耗,并导致变压器发热。要减少涡流,可采用的方法是把整块铁芯改成用薄片叠压的铁芯,增大回路电阻,减少发热损失。[1]
电磁炉采用了磁场感应涡流加热原理,它利用交变电流通过线圈产生交变磁场,当磁场内的 磁感线传到含铁质锅的底部时,即会产生无数强大的小涡流,使锅本身自行迅速发热,然后再加热锅内的食物。