相位谱

相位谱

中文名 相位谱
解释 相位随频率变化的曲线
目录导航

含义

信号的相位谱和信号的幅度谱一样,是[1]信号的重要特征之一。讨论相位谱的特点和性质是信号谱分析的一个基本问题,尤其是在多点激励、载荷建立以及传递路径识别等方面问题的研究中,相位谱起着重要的作用。

相位谱是调整声音相位的,最容易理解的就是左右声道的位置调整,实际上相位还决定着其他很多声音的属性。

对于一个系统,能够通过其相位谱来判断该系统是否为线性相位系统。线性相位系统故名思义,看相位是否随频率线性变化。但相位谱的作用不仅限于此,奥本海姆在一篇经典文献中认为信号的相位包含的信息大于幅度,实际上从最初的最小相位系统,倒谱分析,到系统辨识,高阶谱估计等理论都是以相位谱为突破口。

物理意义

对于某一个固定的模型,其相位值随频率的变化就称为相位谱。傅里叶变换可实现时频转换,时间域的观测成果转换到频率域,就有了相位。频率趋于“0”和无限大时,相位趋于“0”,而在某一频率,相频特性曲线有峰值。
利用此特点,有可能区分极化体性质。

傅里叶变换

傅立叶变换是[2]数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

线性相位

线性相位是指滤波器的相位响应是[3]频率的线性函数(在+/-180度)。因此滤波器的延时后,所有的频率相位相同。因而滤波器不会产生相位和延迟扭曲。在某些领域,比如数字解调器,没有相位或者延迟扭曲是FIR滤波器相对于其他IIR和模拟滤波器的一个关键优点。

特点

一个单一频率的正弦信号通过一个系统,假设它通过这个系统的时间需要t,则这个信号的输出相位落后原来信号wt的相位。从这边可以看出,一个正弦信号通过一个系统落后的相位等于它的w*t;

反过来说,如果一个频率为w的正弦信号通过系统后,它的相位落后delta,则该信号被延迟了delta/w的时间。在实际系统中,一个输入信号可以分解为多个正弦信号的叠加,为了使得输出信号不会产生相位失真,必须要求它所包含的这些正弦信号通过系统的时间是一样的。因此每一个正弦信号的相位分别落后,w1*t,w2*t,w3*t。

因此,落后的相位正比于频率w,如果超前,超前相位的大小也是正比于频率w。从系统的频率响应来看,就是要求它的相频特性是一条直线。在FIR滤波器的设计中,为了得到线性相位的性质,通常利用实偶对称序列的相频特性为常数0和实奇对称序列为相频特性为常数90度的特点。因此得到的是对称序列,不是因果序列,是不可实现系统,为了称为物理可实现系统,需要将它向右移动半个周期,这就造成了相移特性随时间的变化,同时也是线性变化。

线性相位条件

即如果单位脉冲响应h(n)(为实数)具有偶对称或奇对称性,则FIR数字滤波器具有严格的线性相位特性。 数字滤波器中,IIR数字滤波器方便简单,但它相位的非线性,要求采用全通网络进行相位校正,且稳定性难以保障。FIR滤波器具有很好的线性相位特性,使得它越来越受到广泛的重视。

相关百科
返回顶部
产品求购 求购