纳什均衡纳什均衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什均衡。
一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
关于纳什平衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是约翰·纳什在普林斯顿大学攻读博士学位时完成的。实际上,博弈论的研究起始于1944年冯·诺依曼(Von Neumann)和奥斯卡·摩根斯坦(Oscar Morgenstern)合著的《博弈论和经济行为》。然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什平衡这个概念,并在包含“混合策略(mixed strategies)”的情况下,证明了纳什平衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论,进而对“合作博弈(Cooperative Game)”和“非合作博弈”做了明确的区分和定义。阿尔伯特·塔克(Albert tucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。它发展了本身很有意义的n人有限非合作博弈的概念和性质。并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。在概念和方法两方面,该论文都是作者的独立创造。”
纳什平衡可以分成两类:“纯战略纳什平衡”和“混合战略纳什平衡”。
要说明纯战略纳什平衡和混合战略纳什平衡,要先说明纯战略和混合战略。
所谓纯战略是提供给玩家要如何进行赛局的一个完整的定义。特别地是,纯战略决定在任何一种情况下要做的移动。战略集合是由玩家能够施行的纯战略所组成的集合。而混合战略是对每个纯战略分配一个机率而形成的战略。混合战略允许玩家随机选择一个纯战略。混合战略博弈均衡中要用概率计算,因为每一种策略都是随机的,达到某一概率时,可以实现支付最优。因为机率是连续的,所以即使战略集合是有限的,也会有无限多个混合战略。
当然,严格来说,每个纯战略都是一个“退化”的混合战略,某一特定纯战略的机率为1,其他的则为0。
故“纯战略纳什平衡”,即参与之中的所有玩家都玩纯战略;而相应的“混合战略纳什平衡”,之中至少有一位玩家玩混合战略。并不是每个赛局都会有纯战略纳什平衡,例如“钱币问题"就只有混合战略纳什平衡,而没有纯战略纳什平衡。不过,还是有许多赛局有纯战略纳什平衡(如协调赛局,囚徒困境和猎鹿赛局)。甚至,有些赛局能同时有纯战略和混合战略平衡。
囚徒困境
(1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。)
假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
A╲B | 坦白 | 抵赖 |
坦白 | -8,-8 | 0,-10 |
抵赖 | -10,0 | -1,-1 |
关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,如果我抵赖,得坐10年监狱,如果我坦白最多才8年;假如他要是抵赖,如果我也抵赖,我就会被判一年,如果我坦白就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。
基于经济学中Rational agent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被判处一年就不会出现。这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。
硬币正反
你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?
每一种游戏依具其规则的不同会存在两种纳什平衡,一种是纯策略纳什平衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什平衡,而在这个游戏中,便应该采用混合策略纳什平衡。
你\美女 | 美女出正面 | 美女出反面 |
你出正面 | +3,-3 | -2,+2 |
你出反面 | -2,+2 | +1,-1 |
假设我们出正面的概率是x,反面的概率是1-x,美女出正面的概率是y,反面的概率是1-y。为了使利益最大化,应该在对手出正面或反面的时候我们的收益都相等(不然在这个游戏中,对方可以改变正反面出现的概率让我们的期望收入减少),由此列出方程就是
解方程得。
同样,美女的收益,列方程
解得y也等于,而美女每次的期望收益则是。这告诉我们,在双方都采取最优策略的情况下,平均每次美女赢元。
其实只要美女采取了这个方案,不论你再采用什么方案,都是不能改变局面的。
A╲B | 坦白 | 抵赖 |
坦白 | -8,-8 | 0,-10 |
抵赖 | -10,0 | -1,-1 |
你\美女 | 美女出正面 | 美女出反面 |
你出正面 | +3,-3 | -2,+2 |
你出反面 | -2,+2 | +1,-1 |