互信息

互信息

目录导航

互信息的定义

一般地,两个离散随机变量 X 和 Y 的互信息可以定义为:

其中 p(x,y) 是 X 和 Y 的联合概率分布函数,而 分别是 X 和 Y 的边缘概率分布函数。

在连续随机变量的情形下,求和被替换成了二重定积分:

其中 p(x,y) 当前是 X 和 Y 的联合概率密度函数,而 分别是 X 和 Y 的边缘概率密度函数。

如果对数以 2 为基底,互信息的单位是bit。

直观上,互信息度量 X 和 Y 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果 X 和 Y 相互独立,则知道 X 不对 Y 提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果 X 是 Y 的一个确定性函数,且 Y 也是 X 的一个确定性函数,那么传递的所有信息被 X 和 Y 共享:知道 X 决定 Y 的值,反之亦然。因此,在此情形互信息与 Y(或 X)单独包含的不确定度相同,称作 Y(或 X)的熵。而且,这个互信息与 X 的熵和 Y 的熵相同。(这种情形的一个非常特殊的情况是当 X 和 Y 为相同随机变量时。)

互信息是 X 和 Y 的联合分布相对于假定 X 和 Y 独立情况下的联合分布之间的内在依赖性。于是互信息以下面方式度量依赖性:I(X; Y) = 0 当且仅当 X 和 Y 为独立随机变量。从一个方向很容易看出:当 X 和 Y 独立时,p(x,y) = p(x) p(y),因此:

此外,互信息是非负的(即 I(X;Y) ≥ 0; 见下文),而且是对称的(即 I(X;Y) = I(Y;X))。

与其他量的关系

互信息又可以等价地表示成

其中 是边缘熵,H(X|Y) 和 H(Y|X) 是条件熵,而 H(X,Y) 是 X 和 Y 的联合熵。注意到这组关系和并集、差集和交集的关系类似,于是用Venn图表示。

在互信息定义的基础上使用琴生不等式,我们可以证明 I(X;Y) 是非负的,因此 。这里我们给出 I(X;Y) = H(Y) - H(Y|X) 的详细推导:

上面其他性质的证明类似。

直观地说,如果把熵 H(Y) 看作一个随机变量不确定度的量度,那么 H(Y|X) 就是 X 没有涉及到的 Y 的部分的不确定度的量度。这就是“在 X 已知之后 Y 的剩余不确定度的量”,于是第一个等式的右边就可以读作“Y的不确定度,减去在 X 已知之后 Y 的剩余不确定度的量”,此式等价于“移除知道 X 后 Y 的不确定度的量”。这证实了互信息的直观意义为知道其中一个变量提供的另一个的信息量(即不确定度的减少量)。

注意到离散情形 H(X|X) = 0,于是 H(X) = I(X;X)。因此 I(X;X) ≥ I(X;Y),我们可以制定”一个变量至少包含其他任何变量可以提供的与它有关的信息“的基本原理。

互信息也可以表示为两个随机变量的边缘分布 X 和 Y 的乘积 p(x) × p(y) 相对于随机变量的联合熵 p(x,y) 的相对熵:

此外,令 p(x|y) = p(x, y) / p(y)。则

注意到,这里相对熵涉及到仅对随机变量 X 积分,表达式 现在以 Y 为变量。于是互信息也可以理解为相对熵 X 的单变量分布 p(x) 相对于给定 Y 时 X 的条件分布 p(x|y) :分布 p(x|y) 和 p(x) 之间的平均差异越大,信息增益越大。

连续互信息的量化

对连续型随机变数量化的定义如下:

量化后的随机变数:

则,

广义而言,我们可以将互信息定义在有限多个连续随机变数值域的划分。

为连续型随机变数的值域,, 其中划分所构成的集合,意即

量化连续型随机变数后,所得结果为离散型随机变数,

对于两连续型随机变数X、Y,其划分分别为P、Q,则其互信息可表示为:

相关百科
返回顶部
产品求购 求购