作 者:李启虎 著出 版 社:安徽教育出版社ISBN:9787533632649出版时间:2002-11-01版 次:1页 数:548装 帧:精装开 本:16开所属分类:图书 > 科技 > 电子与通信
本书是国内外第一部理论与实践相结合,全面、系统地阐述数字式声纳设计问题的著作。作者以数十年从事声纳信号处理研究、声纳设计和水声工程研究的经验,介绍了数字式声纳设计的基本理论和技术,以及如何把理论设计变为实际系统的实现。全书贯穿了从理论设计到最终交给用户一部性能优越的声纳设备的思想技术方法。
本书的特色体现在以下5个方面:
一、理论分析全面系统
全书开篇介绍了信号处理理论的两大基石:信号和系统理论,以及声纳检测理论,并运用概率论、统计数学与信息论知识,将上述理论建立在严谨的理论框架之内。
二、取材新颖、图文并茂
作者从实用的角度出发,选择已被证明对声纳有实用价值或者有潜在应用前景的技术予以介绍,并辅以如维纳滤波、卡尔曼滤波、自适应线谱增强等理论与技术实现方法。书中配备了大量图表和实例,以便于读者理解和运用理论解决实际问题。
三、结构严谨、注重创新
本书为解决声纳设计中的实际问题,发展了一系列在主、被动声纳中行之有效的新方法,这些成果大多是第一次发表。
四、坚持理论与实践结合的原则
全书始终贯穿着这样一种观点:声纳设计、水声工程是实验科学,理论分析和指导是必要的,但决不能停留在计算机仿真阶段。要重视实践,强调用海上实验检验理论的效果。
五、紧密结合我国实际
本书在介绍声纳领域国际前沿成果的同时,特别注意结合我国的实际情况。书中着重介绍了我国在浅海声场研究方面的成果及其对声纳设计的影响,还结合我国声纳的研制程序,参考国外声纳指标体系,针对我国实际介绍了声纳从战术技术论证到声纳设计、系统集成、软/硬件调试、实验室测试、湖试直到海试的全过程,第一次系统地给出了声纳指标测试与判断的客观准则及理论依据。
《数字式声纳设计原理(英文版)》由浙江大学出版社出版。
版权页:
插图:
For a discrete digital image, the position coordinate and color value are discrete.Neglecting the time moment, the value in each pixel (k,l) is F(k, l) (1≤k≤K,1≤l≤L.The color function F can be considered as a three-dimensional vector, for example,(0, 0, 0) denoting white, (1, 0, 0) denoting pure red and (0.5, 0.5, 0.5)denoting middle gray, etc.If F is a single coror and varies only in brightness, then F is a scalar, e.g., gray color (a, a, a) (0≤a≤1).
The upper boundary K, L of (k, l), sometimes written as K×L, is called the resolution.K is the number of columns and L is the number of rows.For a fixed scree,the larger K ×L is, the higher the resolution is.
For image processing, the general expression can be written as where Q(k,l; m, n) represents the weighting operation on the image and P(m, n) is the image after processing.The range of argument 1≤m≤M, 1≤n≤N can be different with K, L.
2.5.22D Fourier Transform
It is well known that the Fourier transform of a one-dimensional signal is a very important means of analysis in signal processing.The Fourier transform of the time function is the frequency spectrum and the physical meaning is clear.The magntude of the spectrum value in the frequency domain represents the distribution of signal variation, quickly or slowly.Therefore, the filtering process can directly change the signal behavior.
For a two-dimensional signal, the Fourier transform can be formally defined according to the one-dimensional situation.But, there is no direct, comprehensive meaning as in the case of a one-dimensional signal.
Suppos x(k,l) (k = 0, ""', K -1; l= 0, 1,…,L-1)isa two-dimensionsignal.The Fourier transform is defined by.
1 Brief History of Digital Sonar Development
1.1 Evolution of Digital Sonar Systems
1.2 Main Features of Digital Sonar
1.3 Today and Tomorrow of Digital Sonar
References
2 Basic Theory of Digital Signal Processing
2.1Digital Conversion ofAnalogue Signal: Quantization and Sampling
2.1.1Signal Sampling
2.1.2 SignaI Quantization
2.1.3 SignaICompanding
2.1.4∑-△Modulation
2.2 Digital Filtering ofSignal
2.2.1Linear Digital Filtering
2.2.2 Transfer Function ofa Linear System
2.2.3Classification ofDigital Filters
2.2.4 CascadeofDigitaIFilters
2.2.5 Examples ofDigitaIFilters
2.3 Characteristics ofDigital Signals in Time Domain and Frequency Domain
2.3.1 Fourier Transform of Signa
2.3.2 Wiener-Khinchine Theorem
2.3.3 Discrete Fourier Transform
2.3.4Digital Feature of Signal Represented by Discrete Samples
2.3.5 Algorithm ofFast Fourier Transform
2.3.6 Calculation ofDFT for ReaIValue Data
2.4Basic Processing Techruque for One-Dimensional Digital Signal
2.4.1 Local Average Filtering
2.4.2 Median Value Filtering
2.4.3 Threshold Filtering and Truncate Filtering
2.5Two-Dimensional Digital Image Signal Processing
2.5.1Definition ofDigitallmages
2.5.22D Fourier Transform
2.5.32D Cosine Discrere Transforms
2.5.4 Typicallmage Processing Techniques
2.5.5 Time/Bearing Displayin Digita ISO
2.6New Topics ofDigital Signal Processing: Wavelet Transform and Fractal Transform
2.6.1 FractaI Transform
2.6.2 Wavelet Transform
3 Detection and Estimation Theory of Digital Signals
3.1 Some Basic Results from Probability Theory andMathematical Statistics
3.1.1 Basic Definition ofProbab
3.1.3 Random Variable and Distribution Function
3.1.4 DigitaICharacteristics ofRandom Variables
3.1.5 Large Number Law and Central Limit Theorem
3.1.6 Random Process (Stochastic Process)
3.2Introduction to the Basic Concepts oflnformation Theory
3.2.1 Information and Entropy
3.2.2The Coding Theorem ofa Discrete Information Source
3.3 The Optimum Receiving Theory ofWeak Signalin Background Noise
3.3.1Basic Concepts ofStatistical Hypothesis Tests
3.3.2 Optimum Detection Criterio
3.3.7 N-P Test
3.3.4 MultipleObservations
3.3.5 Wald Sequential Test
3.4 Wiener Filtering, Matched Filtering and Adaptive Filtering forStationary Random Signal
3.4.1Basic Relation oflnput / Output ofa Linear System for Stationary Random Signal
3.5Kalman Filtering for Non-stationary Digital Signal
3.5.1 Kalman Filtering ofa One-DimensionalObservation Model
3.5.2 Kalman Filtering ofMultiple Channels 3.6 Parameter Estimation ofRandom Signal
3.6.1 Test ofStationariness and Ergodicness of a Random Signal
3.6.2 Basic Requirements for a Statistic
3.6.3Some Estimates Used Frequently in Sonar Design
3.6.4 Cramer-Rao Low Bound
3.6.5Example (Mean Value Estimate)
3.6.6Model-Free Estimates
4 General Principles of Sonar Design
4.1 Determination ofSonar System Specifications
4.1.2 Relationship between Tactical and Technical
4.1.3 Technical Specification Related Concepts in
4.1.4 Basic Concepts ofSonar Specifications
4.2 Design Procedure ofDigital Sonar:the Sonar Equation
4.2.2 Active Sonar Equation
4.2.3 Passive Sonar Qquation
4.2.4Calculation ofthe Sonar Ranging Distance
4.3.1Main Source ofAmbient Noise in the Ocean
4.3.2 Frequency spectrum ofambient noise
4.3.3 Minimum AmbientNoise
4.3.4 Homogeneous and Isotropic Noise Fields
4.3.5Cylindrical and Spherical Model ofAmbient Noise
4.3.6 Vertical Directivity ofAmbient Noise
4.4 Radiated Noise from Underwater Target and Platform Noise
4.4.1Sources ofRadiated Noise
4.4.3 Radiated Noise ofSurface Ships
4.4.4 Radiated Noise ofTorpedo
4.4.5 Self-noise ofVessels
4.4.6 Auto-correlation Function ofTarget Noise
4.5.1 Sources ofReverberation
4.5.2 Short Distance Reverberation Theory
4.5.3 Volume and Boundary Reverberation Levels
4.5.4 Relationship between Reverberation Strength and Impulse Duration
4.5.5 Statistical Characteristics of Reverberations
4.6Sound Propagation in the Ocean and Underwater AcousticChannel
4.6.1 Sound Wave and Vibration
4.6.2 Velocity of Sound in the Sea: Sound Speed Profile
4.6.3Wave and Ray Theories of Underwater Sound Fields
4.6.4Transmission Loss
4.6.5Sound Absorption in Sea Water
4.6.6 Upper Boundary ofAcoustic Channel: the Sea Surface andIts Acoustic Characteristics
4.6.7 Lower Boundary ofAcoustic Channel: the Sea Floor and Its Characteristics
4.6.8Use ofPropagation Characteristics in Sonar Design
4.6.9Average Structure of a Sound Field in Shallow Water
4.6.10 Use ofTransmission Lossin Sonar Ranging Distance Prediction
4.7 Hydrophone Array and Beamforming
4.7.1 Directivity Function (Beam Pattern)
4.7.2 ConventionalBeamforming
4.7.3 Equal-Spaced Line Array
4.7.4 Uniformly Distributed Discrete Circle Array
4.7.5 Circle Array Baffling and Arc Array
4.7.6Product Theorem ofDirectivity Function ofa Line Array
4.7.7 Weighting ofan Array
4.7.8 General Expression ofDirectivity Function
4.7.9 Continuous Distributed Array
4.8 Calculation ofSonar System Gain
4.8.1 Spatial Gain of Sonar System
4.8.2 Calculation ofTime Processing Gain ofPassive Sonar
4.8.3 Calculation ofTime Processing Gain ofActive Sonar
4.9Gain Loss ofa Sonar System in the Interface of Various Sub-systems
4.9.1 Relationship between Sonar System Gain and Input signal-to-noise Ratio
4.9.2 Gain Loss at the Interface ofa Hydrophone andan A / D Converter
4.9.3 Interface Loss Due to Time Integration
4.9.4Loss at the Interface ofthe Signal Processor andthe Display System
4.10 Explosive Source ofUnderwater Sound
4.10.1 Main Characteristics ofExplosive Sources of Underwater Sound
4.10.2 Measurement of Transmission Loss by Using Explosive Source
References
……
5 Design of Digital Sonar
6 Implementation Methods of Various Functions of Digital Sonar
7 System Simulation Techniques in Digital Sonar Design
8 Introduction of Typical Modern Digital Sonar
9 Software and Hardware Support and Performance Evaluation in Digital Sonar Design
Index