先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<;…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
Shell排序的执行时间依赖于增量序列。
好的增量序列的共同特征:
① 最后一个增量必须为1;
② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。
有人通过大量的实验,给出了目前较好的结果:当n较大时,比较和移动的次数约在n到1.6n之间。
希尔排序的时间性能优于直接插入排序的原因:
①当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。
②当n值较小时,n和n^2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n^2)差别不大。
③在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
因此,希尔排序在效率上较直接插入排序有较大的改进。
希尔排序是不稳定的。参见上述实例,该例中两个相同关键字49在排序前后的相对次序发生了变化。
Shell排序算法的时间复杂度分析比较复杂,实际所需的时间取决于各次排序时增量的个数和增量的取值。研究证明,若增量的取值比较合理,Shell排序算法的时间复杂度约为O(n(ldn)2)。由于Shell排序算法是按增量分组进行的排序,所以Shell排序算法是一种不稳定的排序算法。
Step1 将n个元素个数列分为5个小组,在每个小组内按直接插入法排序;
step2 在第i步,分组个数取 di+1 =(di +1)/2 {9,5,3,2,1};相临两组之间的对应元素进行比较,如果ai>aj,则交换它们的位置;
Step3 当dK = 1的循环过程完成后,排序过程结束。
希尔排序举例:设有字符数列"f d a c b e",执行Shell排序:
下面几个算法有研究价值
Lazarus-Frank 算法,1960 年发表。
Papernov-Stasevich 算法,1965年发表
Incerpj-Sedgewick 算法,1985 年发表。