工程测量中采样频率不可能无限高也不需要无限高,因为一般只关心一定频率范围内的信号成份。为解决频率混叠,在对模拟信号进行离散化采集前,采用低通滤波器滤除高于1/2采样频率的频率成份。实际仪器设计中,这个低通滤波器的截止频率(fc) 为:
截止频率(fc)= 采样频率(fs) / 2.56
在进行动态信号测试中测量仪器必须具有抗混滤波功能,例如:在大型桥梁、高楼、机械设备等动态振动测试及模态分析中,信号所包含的频率成份理论上是无穷的。例如:桥梁的模态理论上有无限多个,但我们只关心对振动贡献最大的前几阶模态。如果不对振动的模拟信号进行低通抗混滤波,高阶模态频率很可能会混叠到低频段,形成虚假的模态频率,给模态参数识别带来困难。
性能指标
抗混滤波器一般指低通滤波器,但滤波器有低通滤波器、带通滤波器、带阻滤波器、高通滤波器、高阻滤波器。滤波器的主要性能指标以低通滤波器为例,理想的低通滤波器为矩形,但实际中是不可能实现的。衡量低通滤波器性能的指标主要包括以下几方面:
带内波纹度:通带的幅值精度指标,例如:带内波纹度为±0.1dB时,对幅值精度的影响约为±1%(这正是为什么一般的数采器幅值精度可以做到千分之几,一般的数采器用很高的采样频率进行采集,不加低通滤波器)。
阻带下降斜率:滤波器在截至频率开始下降,下降斜率越大越好。一般采用每个倍频程的下降分贝数衡量,例如:满足工程测量需要的阻带下降斜率约为-80dB/oct。
滤波器落差:带通到带阻差值的分贝数dB。
值得一提的是:随着DSP信号处理芯片的出现,现代测试仪器中已采用模拟滤波加数字滤波,使滤波器性能指标突飞猛进。例如:带内波纹度可达±0.05dB,阻带下降斜率可达到约-200dB/oct,大大好于纯模拟滤波器。
滤波器是一种对信号有处理作用的器件或电路。
主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。
滤波器一般有两个端口,一个输入信号、一个输出信号
利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。
滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为
XL·XC=K2
故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率者,称为m常数滤波器。所谓截止频率,亦即与滤波器有尖锐谐振的频率。通带与带阻滤波器都是m常数滤波器,m为截止频率与被衰减的其他频率之衰减比的函数。每一m常数滤波器的阻抗与K常数滤波器之间的关系,均由m常数决定,此常数介于0~1之间。当m接近零值时,截止频率的尖锐度增高,但对于截止频的倍频之衰减率将随着而减小。最合于实用的m值为0.6。至于那一频率需被截止,可调节共振臂以决定之。m常数滤波器对截止频率的衰减度,决定于共振臂的有效Q值之大小。若达K常数及m常数滤波器组成级联电路,可获得尖锐的滤波作用及良好的频率衰减。
滤波器,顾名思义,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间‘是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。随着数字式电子计算机(一般简称计算机)技术的产生和飞速发展,为了便于计算机对信号进行处理,产生了在抽样定理指导下将连续时间信号变换成离散时间信号的完整的理论和方法。也就是说,可以只用原模拟信号在一系列离散时间坐标点上的样本值表达原始信号而不丢失任何信息,波、波形、信号这些概念既然表达的是客观世界中各种物理量的变化,自然就是现代社会赖以生存的各种信息的载体。信息需要传播,靠的就是波形信号的传递。信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,有时,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了。
滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程。
巴特沃斯响应(最平坦响应)
巴特沃斯响应能够最大化滤波器的通带平坦度。该响应非常平坦,非常接近DC信号,然后慢慢衰减至截止频率点为-3dB,最终逼近-20ndB/decade的衰减率,其中n为滤波器的阶数。巴特沃斯滤波器特别适用于低频应用,其对于维护增益的平坦性来说非常重要。
贝塞尔响应
除了会改变依赖于频率的输入信号的幅度外,滤波器还会为其引入了一个延迟。延迟使得基于频率的相移产生非正弦信号失真。就像巴特沃斯响应利用通带最大化了幅度的平坦度一样,贝塞尔响应最小化了通带的相位非线性。
切贝雪夫响应
在一些应用当中,最为重要的因素是滤波器截断不必要信号的速度。如果你可以接受通带具有一些纹波,就可以得到比巴特沃斯滤波器更快速的衰减。附录A包含了设计多达8阶的具巴特沃斯、贝塞尔和切贝雪夫响应滤波器所需参数的表格。其中两个表格用于切贝雪夫响应∶一个用于0.1dB最大通带纹波;另一个用于1dB最大通带纹波。
板上滤波器虽然对高频的滤波效果不理想,但是如果应用得当,可以满足大部分民用产品电磁兼容的要求。在使用时要注意以下事项:
如果决定使用板上滤波器,在布线时就要注意在电缆端口处留出一块“干净地”,滤波器和连接器都安装在“干净地”上。通过前面的讨论,可知信号地线上的干扰是十分严重的。如果直接将电缆的滤波电容连接到这种地线上,会造成严重的共模辐射问题。为了取得较好的滤波效果,必须准备一块干净地。并与信号地只能在一点连接起来,这个流通点称为“桥”,所有信号线都从桥上通过,以减小信号环路面积。
同一组电缆内的所有导线的未滤波部分在—起,已滤波部分在一起。否则,一根导线的耒滤波部分会将另一根导线的已滤波部分重新污染9使电缆整体滤波失效。
波器与面板之间的导线的距离应尽量短。必要时,使用金属板遮挡一下,隔离近场干扰。
安装滤波器的干诤地要与金属机箱可靠地搭接起来,如果机箱不是金属的,就在线路板下方设置一块较大的金属板来作为滤波地。干净地与金属机箱之间的搭接要保证很低的射频阻抗。如有必要,可以使用电磁密封衬垫搭接,增加搭接面积,减小射频阻抗。
考虑到引脚的电感效应,其重要性前面已讨沦,滤波器的局部布线和设计线路板与机箱(金属板)的连接结构时要特别注意。
在端口滤波的电缆和不滤波的电缆应尽量远离,防止发生上述的耦合问题。