射线 直线
1.直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内不相交的两条直线叫作平行线。
有关平行线:
1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD ,写作AB∥CD
2. 平行公理:过直线外一点有且只有一条直线与已知直线平行。
3. 平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b
平行线的判定:
1. 两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2. 两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3 . 两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:
1. 两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补。
3 . 两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。