玻尔模型

玻尔模型

目录导航

玻尔模型的提出

丹麦物理学家尼尔斯·玻尔(1885—1962)丹麦物理学家尼尔斯·玻尔(1885—1962)

20世纪初期,德国物理学家普朗克为解释黑体辐射现象,提出了量子论,揭开了量子物理学的序幕。19世纪末,瑞士数学教师巴耳末将氢原子的谱线表示成巴耳末公式,瑞典物理学家里德伯总结出更为普遍的光谱线公式里德伯公式。然而巴耳末公式和式里德伯公式都是经验公式,人们并不了解它们的物理含义。

1911年,英国物理学家卢瑟福根据1910年进行的α粒子散射实验,提出了原子结构的行星模型。在这个模型里,电子像太阳系的行星围绕太阳转一样围绕着原子核旋转。但是根据经典电磁理论,这样的电子会发射出电磁辐射,损失能量,以至瞬间坍缩到原子核里。这与实际情况不符,卢瑟福无法解释这个矛盾。

1912年,正在英国曼彻斯特大学工作的玻尔将一份被后人称作《卢瑟福备忘录》的论文提纲提交给他的导师卢瑟福。在这份提纲中,玻尔在行星模型的基础上引入了普朗克的量子概念,认为原子中的电子处在一系列分立的稳态上。回到丹麦后玻尔急于将这些思想整理成论文,可是进展不大。

1913年2月4日前后的某一天,玻尔的同事汉森拜访他,提到了1885年瑞士数学教师巴耳末的工作以及巴耳末公式,玻尔顿时受到启发。后来他回忆到“就在我看到巴耳末公式的那一瞬间,突然一切都清楚了,”“就像是七巧板游戏中的最后一块。”这件事被称为玻尔的“二月转变”。

1913年7月、9月、11月,经由卢瑟福推荐,《哲学杂志》接连刊载了玻尔的三篇论文,标志着玻尔模型正式提出。这三篇论文成为物理学史上的经典,被称为玻尔模型的“三部曲”。

玻尔模型的主要内容

玻尔模型的两个主要假设为,

在氢原子中,电子围绕著原子核进行圆周运动。

在轨道中运动的电子的角动量的大小 被量子化为正整数乘以约化普朗克常数

轨道半径量子化

按照第一个假设,在氢原子中的电子,围绕著原子核做圆周运动,其轨道是经典轨道。电子做圆周运动的向心力是由电子和原子核之间的库仑力所提供:

其中, 是电子质量, 是电子速率, 是电子轨道半径, 是电常数, 是基本电荷。

所以,半径为

另外,圆周运动的角动量大小是半径乘以动量:

所以,按照第二个假设,速度为

其中, 是主量子数, 是约化普朗克常数。

将速度的表达式代入半径的表达式,可以得到新的半径的表达式

这轨道半径表达式可以重写为

其中, 是玻尔半径。

在氢原子的波尔模型里,以原子核为圆心的电子圆周运动的半径被量子化,最小的半径是玻尔半径。由于电子被禁止离原子核更近,库仑力无法将电子吸引到原子核里,电子也不会因为进行圆周运动的加速度而释出电磁波。

轨道能量量子化

电子绕着原子核的轨道能量 是动能 加势能

将轨道半径表达式代入轨道能量表达式,可以得到

在氢原子的波尔模型里,轨道能量被量子化,并与主量子数的平方成反比。这是束缚电子的能量。由于原子核被假设为固定不动,这能量也可以视为整个氢原子的能量。

跃迁能量变化

电子只能够稳定地存在于一系列的离散的能量状态之中,称为定态。假若电子的能量发生任何变化,都必须要在两个定态之间以跃迁的方式进行,所以电子只能处于一系列分立的定态。当电子从一个定态跃迁至另一个定态时,会以电磁波的形式放出或吸收能量:

其中, 是频率。

将轨道能量表达式代入这公式,可以得到

将这表达式重写,可以得到里德伯公式:

其中, 是里德伯常数。

修正

英国光谱学家亚弗列德·福勒质疑:应用玻尔模型计算出里德伯常数的数值;而实验值,二者相差大约万分之五。1914年,玻尔提出,这是因为原来的模型假设原子核静止不动而引起的。实际情况是,原子核的质量不是无穷大,它与电子绕共同的质心转动。玻尔对其理论进行了修正,用原子核和电子的折合质量代替了电子质量。这样的话,不同原子的里德伯常数RA不同,

电子到质心的距离仍为原来理论中的第一轨道半径,与原子核的质量无关。

玻尔模型的实验验证

1897年,美国天文学家爱德华·皮克林在恒星弧矢增二十二的光谱中发现了一组独特的线系,称为皮克林线系。皮克林线系中有一些谱线靠近巴耳末线系,但又不完全重合,另外有一些谱线位于巴耳末线系两临近谱线之间。起初皮克林线系被认为是氢的谱线,然而玻尔提出皮克林线系是类氢离子He+发出的谱线。随后英国物理学家埃万斯在实验室中观察了He+的光谱,证实玻尔的判断完全正确。

和玻尔提出玻尔模型几乎同一时期,英国物理学家亨利·莫塞莱测定了多种元素的X射线标识谱线,发现它们具有确定的规律性,并得到了经验公式——莫塞莱定律。莫塞莱看到玻尔的论文,立刻发现这个经验公式可以由玻尔模型导出,为玻尔模型提供了有力的证据。

1914年,詹姆斯·弗兰克和古斯塔夫·赫兹进行了用电子轰击汞蒸汽的实验,即弗兰克-赫兹实验。实验结果显示,汞原子内确实存在能量为4.9eV的量子态。1920年代,弗兰克和赫兹又继续改进实验装置,发现了汞原子内部更多的量子态,有力地证实了玻尔模型的正确性。

1932年,哈罗德·尤里观察到了氢的同位素氘的光谱,测量到了氘的里德伯常数,和玻尔模型的预言符合得很好。

玻尔模型的推广

随着光谱实验水平的提高,人们发现了光谱具有精细结构。1896年,阿尔伯特·迈克耳孙和爱德华·莫雷观察到了氢光谱的Hα线是双线,随后又发现是三线。玻尔提出这可能是电子在椭圆轨道上做慢进动引起的。1916年索末菲在玻尔模型的基础上将圆轨道推广为椭圆形轨道,并且引入相对论修正,提出了索末菲模型。在考虑椭圆轨道和相对论修正后,索末菲计算出了Hα线的精细结构,与实验相符。然而进一步的研究发现,这样的解释纯属巧合。Hα线的精细结构有7条,必须彻底抛弃电子轨道的概念才能完全解释光谱的精细结构。

玻尔模型的困难

玻尔模型将经典力学的规律应用于微观的电子,不可避免地存在一系列困难。根据经典电动力学,做加速运动的电子会辐射出电磁波,致使能量不断损失,而玻尔模型无法解释为什么处于定态中的电子不发出电磁辐射。玻尔模型对跃迁的过程描写含糊。因此玻尔模型提出后并不被物理学界所欢迎,还遭到了包括卢瑟福、薛定谔在内的诸多物理学家的质疑。玻尔曾经的导师、剑桥大学的约瑟夫·汤姆孙拒绝对其发表评论。薛定谔甚至评价说是“糟透的跃迁”。

此外,玻尔模型无法揭示氢原子光谱的强度和精细结构,也无法解释稍微复杂一些的氦原子的光谱,以及更复杂原子的光谱。因此,玻尔在领取1922年诺贝尔物理学奖时称:“这一理论还是十分初步的,许多基本问题还有待解决。”

玻尔模型引入了量子化的条件,但它仍然是一个“半经典半量子”的模型。完全解决原子光谱的问题必须彻底抛弃经典的轨道概念。尽管玻尔模型遇到了诸多困难,然而它显示出量子假说的生命力,为经典物理学矢量子物理学发展铺平了道路。

相关百科
返回顶部
产品求购 求购