费马引理

目录导航

定理

设函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对任意的,有

那么

费马引理的一个推论是,函数f在定义域A内的最大值和最小值只能在边界上,不可导的点,或驻点取得。

证明

假设是一个极大值点(如果是极小值点,证明亦类似)。那么存在一个,使得对于所有的,都有。因此对于任何,有:

由于当从上方趋于0时,这个比值的极限存在且为,我们便有。另一方面,当时,我们注意到:

从下方趋于0时,这个极限存在,且等于,我们又有

因此

相关百科
返回顶部
产品求购 求购