功能性磁振造影

功能性磁振造影

目录导航

功能性磁共振成像

(fMRI,unctionalagneticesonancemaging):功能性磁共振成像资料(黄到橘色)叠在数人平均而得的脑部解剖影像(灰阶)上方,显示出受外界刺激时的脑部活化区域。

背景

自从1890年代开始,人们就知道血流与血氧的改变(两者合称为血液动力学)与神经元的活化有着密不可分的关系。神经细胞活化时会消耗氧气,而氧气要借由神经细胞附近的微血管以红血球中的血红素运送过来。因此,当脑神经活化时,其附近的血流会增加来补充消耗掉的氧气。从神经活化到引发血液动力学的改变,通常会有1-5秒的延迟,然后在4-5秒达到的高峰,再回到基线(通常伴随着些微的下冲)。这使得不仅神经活化区域的脑血流会改变,局部血液中的去氧与带氧血红素的浓度,以及脑血容积都会随之改变。

血氧浓度相依对比(Blood oxygen-level dependent,BOLD)首先由小川诚二等人于1990年所提出,接着由邝健民等人于1992年发表在人身上的应用。由于神经元本身并没有储存能量所需的葡萄糖与氧气,神经活化所消耗的能量必须快速地补充。经由血液动力反应的过程,血液带来比神经所需更多的氧气,由于带氧血红素与去氧血红素之间磁导率不同,含氧血跟缺氧血量的变化使磁场产生扰动而能被磁振造影侦测出来。借由重复进行某种思考、动作或经历,可以用统计方法判断哪些脑区在这个过程中有信号的变化,因而可以找出是哪些脑区在执行这些思考、动作或经历。

几乎大部分的功能性磁共振成像都是用BOLD的方法来侦测脑中的反应区域,但因为这个方法得到的信号是相对且非定量的,使得人们质疑它的可靠性。因此,还有其他能更直接侦测神经活化的方法(像是氧抽取率(Oxygen Extraction Fraction,OEF)这种估算多少带氧血红素被转变成去氧血红素的方法)被提出来,但由于神经活化所造成的电磁场变化非常微弱,过低的信杂比使得至今仍无法可靠地统计定量。

技术

应用正电子发射断层扫描技术(PE Tscans),或称之为PET扫描技术的研究,给被试服用不同种放射活性物质(但是很安全),这些物质在脑内被活动的脑细胞吸收。磁共振成像(magnetic resonance imaging,MRI)利用磁场和射频波脑内产生脉冲能量,因为脉冲可调谐到不同频段,使一些原子与磁场偶联。当磁脉冲被关掉的瞬间,这些原子振动(共振)并返回到自己的初始态,特殊的射频接收器检测这些共振及其对于计算机的通道信息,据此而产生不同原子在脑区中的定位图像。

功能性磁共振成像(functional magnetic resonance imaging,fMRI)的新技术,将上述两项技术优势结合起来,通过检验血流进入脑细胞的磁场变化而实现脑功能成像,它给出更精确的结构与功能关系。

相关百科
返回顶部
产品求购 求购