其实,我们早已经接触过吸引子了。在动力学里,就平面内的结构稳定系统——典型系统——而言,吸引子不外是:1.单个点2.稳定极限环。也可解释为:长期运动不外是:1.静止在定态2.周期性地重复某种运动系列。在非混沌体系中,这两种情况都是“一般吸引子”,而在混沌体系中,第二种情况则被称为:“奇怪吸引子”,它本身是相对稳定的,收敛的,但不是静止的。奇怪吸引子是稳定的、具分形结构的吸引子。保守系统由于相体积永远不变,所以不存在吸引子,而耗散系统则不然,相体积在演化过程中不断收缩,各种各样的运动在演化中逐渐衰亡,最后只剩下少数自由度决定的长时间行为,即:耗散系统的运动最终趋向维数比原始相空间低的极限集合,这个极限集合就是吸引子一个系统可能没有吸引子,也可能同时存在多个吸引子。不同吸引子可能属于同一类型,也可能属于不同类型。原则上讲,几类吸引子的各种组合都可能出现。例如,同时存在几个结点,或同时存在不动点和极限环,或同时存在不动点、极限环、奇怪吸引子,或同时有几个奇怪吸引子,等等。
一般地,系统越复杂,吸引子(如果存在的话)结构就越复杂。那么,如何刻画或度量吸引子的复杂性,这是研究吸引子的重要内容。凡存在吸引子的系统,均为有目的的系统。从暂态向渐近稳定定态的运动过程,就是系统寻找目的的过程。所谓目的,就是在给定的环境中,系统只有在目的点或目的环上才是稳定的,离开了就不稳定,系统自己要拖到点或环上才能罢休。
从相空间上看,系统演化的目的体现为一定的点集合,代表演化过程的终极状态,即目的态,具有如下特征:
(1)终极性,处于非目的态的系统“不安于现状”,力求离之远去,处于目的态的系统则“安于现状”,自身不再愿意或无力改变这种状态(也可以叫做惰性)。
(2)稳定性,目的态是系统自身质的规定性的体现,这种规定性只有在稳定状态中才能确立起来并得到保持,不稳定状态不可能成为目的态;
(3)吸引性,吸引性是目的性的根本要素,没有吸引力的状态不能成为系统演化所追求的目标。只要系统尚未到达目的态,现实状态与目的态之间必定存在非0的吸引力,牵引着系统向目的态运动。相空间中满足以上3个条件的点集合A(可能包含1个点、有限个点或无限个点),被称为动力学系统的吸引子。吸引子只能是定态,而且必须是稳定态。