表面合金化

表面合金化

中文名 表面合金化
用途 铁基体材料
目录导航

简介

        表面合金化是通过扩散改变基体金属 表面层的成分和组织的 材料保护技术,在机械制造中主要应用的是铝、铬、硅、钒、锌等的表面合金化层或渗层。

概述

       surface alloying 通过扩散改变基体金属表面层的成分和组织的材保护技术。在机械制造中主要应用的是铝、铬、硅、钒、 锌等的表面合金化层或渗层。渗层是利用金属卤化物汽与金属表面层产生化学反应形成的,或是在液相中生化学反应而形成的。

       对于铝有多种渗层。最早的是在碳素钢或低合金钢基体上获得含铝约25%、层厚约 125~1000微米的覆层。这种覆层具有在大气或炉气中长期抗 800℃以内的氧化的能力,用于生产空气加热器、加热炉和蒸汽过热器的构件。铝铁合金需要在渗剂中加热到1080℃,经24小时而获得 25~150微米厚的覆层。渗前若先镀扩散屏蔽层(如铂),便可以抑制或延缓基体与覆层中金属元素间的相互扩散。  

生成特点

    铬的渗层可在低碳钢、高碳钢、合金钢、不锈钢、工具钢、铸铁和铁粉烧结件上生成。可用粉末法,也可用熔盐法。在低碳铁金属表面形成含高铬的合金,厚度可达75微米,而且在高温下的抗氧化性较好;在高碳的金属表面可形成较薄的(12~50微米)碳化铬层,这种渗铬层在湿腐蚀条件下工作较好。渗铬层在以后的热处理中不受损毁,抗蚀性相当于含铬30%的钢。碳化铬层的硬度很高,耐磨性良好,多用于保护阀门、喷嘴、泵、量规和工模具。

  渗硅主要用于低碳(C<0.25%)、低硫(S<0.04%)钢。工件埋在碳化硅粉末中,加热到930~980℃时导入氯气,经气相反应后可得125~250微米厚的脆性渗硅层。这种覆层具有耐磨、耐蚀性能,硬度高,还具有良好的抗擦伤性,用于泵轴、缸衬、阀门、传送带链的联结件和洗瓶机的构件。铌、钼、钽、钨等难熔金属可作为航天器的短期有效构件材料,多采用硅化物层来减少它们在1650℃时的氧化。发展更有效的抗热腐蚀的渗层,也在探索中。

  渗钒时,基体钢材中的碳含量至少应为0.4%,渗钒层的硬度很高,但冷焊性不佳。高碳工具钢的VC层,表面硬度在2牛顿载荷下可达HV22300,渗层厚度为19微米。在220号刚玉砂纸上的圆盘试验结果表明,它的相对抗磨粒磨损性,远高于渗硼层、渗氮层和渗碳层。

基本应用

       渗锌主要用在铁基体材料上。把工件、锌粉和填料放在滚桶中滚动,并加热到350~400℃,约3~12小时即可获得渗层。渗层厚度在25~37.5微米间时,基体圆柱形工件直径会胀大0.01~0.04毫米,所以组合件渗锌时,应留一定的空隙量,便于渗后不加工即可装配。渗锌层的最大特点是厚度均匀,抗蚀性极好,渗锌方法简单,效果也好,但装入和卸出时,粉尘飞扬,不仅污染大气,而且还会使一部分锌粉氧化。

  

合金发展

  激光表面会自化,是激光束与材料表面互相作用,使材料表面发生物理冶金和化学变化,达到表面强化的方法。该技术的特点是:一能在材料表面进行各种合金元素的合金化,改善材料表面的性能;二能在零件需要强化部部位进行局部处理。所以对节能、节材,提高产品零件的使用寿命具有重大的意义。

  近一二十年来,许多国家和地区投入了大量的人力与物力进行了此项目的研究。在基材方面,除研究了多种黑色金属外,还研究了Al合金、Ti合金、Cu合金、Ni基合金等。添加的合金元素有Ni、Cr、W、Ti、Co、Mn、Mo、B等。研究重点有如下四个方面。

  1)工艺研究。包括工艺方法、合金元素和工艺参数(激光光斑形状与尺寸、功率、扫描速度)的选配等研究工作。

  2)理论分析。激光表面合金化的传热、传热数学模型计算。

  3)合会层的组织与性能研究。重点侧重于耐磨性循研究。有的也进行了耐腐蚀及抗氧化的研究。

  4)应用研究。如在排气阀门、阀座、高速钢刀具及汽车活塞等零件上的应用。

  

激光表面合金化的强化机制

  1.合金层硬度

  以WC/Co为添加粉末合金化后,主要获得M6C型碳化物,硬度约为1300HV,由于碳化物量很流,呈细网格分布,基体又为马氏体组织,所以表面硬度达1000HV以上。

  Cr3C2合金化以后,组织特征为基体上分布分布着网状碳化物,析出的碳化物为M7C3型,这种碳化物硬度高达2100HV,由于合金碳化物在基体中分布较稀。故表层硬度也只有1000HV左右。

  在WC/Co中加入Ni粉以后,合金层中碳化物类型并不发生变化,但基体中出现奥氏体。Ni的加入量越多,奥氏体量越高。硬度也随着下降。激光表面合金化,可以根据合金化成分构控制,得到高硬度的合金层。

  2.激光表商合金化的磨损性能

  静载滑动磨损时,在单束斑扫描条件下,以WC/Co合金化时的耐磨性比45钢(淬火态),提高17倍以上,比Cr3C2/Ni-Cr提高12倍。宽带扫描时,用WC/Co合金化后,耐磨性提高28倍。

  在冲击磨损条件下,合金化后材料的耐磨性也有很大的提高。WC/Co合金层的耐磨性相当于45钢(淬火态)的6倍。在C/Co中加入Ti20%(质量分数,下同)和TiC30%后,耐磨性也分别提高3仿与5倍。

  激光表面合金化的强化机制,是相变硬化、固溶强化和碳化物强化的综合强化结果。WC/Co合金化后基体为马氏体,M6C型碳化物的硬度为1300HV左右,在磨损时,将首先选择性磨损马氏体基体,碳化物渐渐露出磨面,由于碳化物网的支撑作用,所以合金化展表现出极高的耐磨性。

  在Cr3C2/Ni-Cr的合金化层中,基材含有较多奥氏体;硬度较低(600~800HV)。在磨损时,基体磨损很快,但一显露出网状碳化物后,因其碳化物M7C3硬度很高(2100HV),就起了很好的支撑作用。呈现了较好的耐磨性。

  激光表面合金化的强化,应是相变硬化、固溶强化和碳化物第二相强化的综合效果。而合金层能获得超出基体材料的硬度及大幅度提高耐磨性,主要是碳化物第二相强化的结果,所以在以耐磨性为目的的合金化研究中、碳化物第二相强化是最主要的强化机制。

  

激光表面合金化的应用

  北京机床研究所张魁武等人,用复合合金粉末激光合金化处理的45钢基无心磨床托板,在生产车间使用,比原来CrWMn钢淬火的托板寿命提高3~4倍。

  重庆大学、北京工业大学等单位采用激光表面合金化工艺,用于电地冲棒、无缝钢管穿孔顶头及泥浆泵叶轮等零件的处理,都取得了很好的效果。北京机电研究所曾对拖拉机换向拨叉、螺母攻丝机料道、轴承扩孔模、冲材模、电厂排粉机叶片及铝活塞等零件上的应用研究,都取得了很好的效果。拨叉,料道使用寿命提高10倍以上。冲材模、排粉机叶片使用寿命提高2~3倍。激光表面合金化用于铝活塞环槽强化,经装车试验,运行14.2万km以后拆检结果,头道环槽的侧隙仅为0.11mm,如果减去0.04~0.05mm的原始侧隙,则环槽最大磨损量仅有0.07mm。所以激光表面合金化用于铝合金的强化是十分有效的。

技术

      本书涉及了金属表面各种合金化技术的基础理论、应用及最新技术。本书首先对金属表面工程技术的内涵、分类、功能及作用进行了阐述;继而介绍了金属表面工程的基本理论和基础知识;随后从传统的表面处理入手,从实用角度出发,论述了各种现代金属表面合金化的工艺及最新进展,并详细介绍了一些应用实例。可使读者用较少的时间对金属表面合金化这一领域有较为全面的了解,从而为制备综合性能良好且具备优异表面特性的新材料提供科学方法和理论指导。

     本书可供从事材料表面技术与工程、涂层材料、薄膜材料研究与开拓应用的科研人员及工程技术人员参考,也可作为高等院校教材专业和相近专业的本科生、研究生教学参考书。

相关百科
返回顶部
产品求购 求购