三角形数

三角形数

目录导航

性质

第n个三角形数的公式是

第n个三角形数是从1开始的n个自然数的和。

所有大于3的三角形数都不是质数。

开始的n个立方数的和是第n个三角形数的平方(举例:1 + 8 + 27 + 64 = 100 = 102)

所有三角形数的倒数之和是2。

任何三角形数乘以8再加1是一个平方数。

一部分三角形数(3、10、21、36、55、78……)可以用以下这个公式来表示:;而剩下的另一部分(1、6、15、28、45、66……)则可以用来表示。

一种检验正整数x是否三角形数的方法,是计算:

如果n是整数,那么x就是第n个三角形数。如果n不是整数,那么x不是三角形数。这个检验法是基于恒等式

特殊的三角形数

55、5,050、500,500、50,005,000……都是三角形数。

第11个三角形数(66)、第1111个三角形数(617,716)、第111,111个三角形数(6,172,882,716)、第11,111,111个三角形数(61,728,399,382,716)都是回文式的三角形数,但第111个、第11,111个和第1,111,111个三角形数是。

它与其他数的关系

是否在相继出现的三角形数之间至少存在一个素数,在9000000以下的数目是正确的。

四面体数是三角形数在立体的推广。

两个相继的三角形数之和是平方数。

三角平方数是同时为三角形数和平方数的数。

三角形数属于一种多边形数。

所有偶完美数都是三角形数。

任何自然数是最多三个三角形数的和。高斯发现了这个规律,他在1796年7月10日在日记中写道:EYPHKA! num = Δ + Δ + Δ

相关百科
返回顶部
产品求购 求购