室温超导体

室温超导体

中文名 室温超导体
性质 超导体
时间 2014年
目录导航

基本信息

室温超导体室温超导体(5)2013年,德国马普研究所的安德里亚·卡瓦莱里(Andrea Cavalleri)与一个国际团队合作发现,当YBCO被红外激光脉冲照亮时,在很短的一瞬间,它会暂时在室温下变成超导体。激光明显改变了这种晶体中双层之间的耦合。不过,确切的机制当时并不清楚。

发展经历

于是,物理学家决定用美国的LCLS,世界上最强大的X射线激光器,从实验上揭开这个谜题。“我们再次向这种晶体发射了红外脉冲,这会激发某些原子开始振荡,”最近这项新研究的第一作者、马普学会的物理学家罗曼·曼科夫斯基(Roman Mankowsky)解释说,“短时间之后,我们再用X射线短脉冲照射晶体,精确测量被激发晶体中的晶体结构。”

结果,他们发现:红外脉冲不只是激发这些原子振荡,还使它们的位置在晶体中发生偏移。这会使双层氧化铜短时间内变得更厚一些,增厚了大约2皮米(差不多是一个原子直径的百分之一),而它们之间的夹层则相应变窄了那么多。进而,这样的变化增加了双层之间的耦合程度,使得这种晶体在几皮秒内变成了室温超导体。

一方面,新的研究结果有助于补完仍旧不完整的高温超导理论。“另一方面,它可以帮助材料科学家开发具有更高临界温度的新超导材料,”曼科夫斯基说。“也许不需要冷却、能够在室温下工作的超导材料将不再是梦想。”直到现在,超导磁体、引擎和线缆都必须用液氮或液氦冷却到远低于零度的温度。如果复杂的冷却设施不再需要,那超导技术就获得了突破。

这一结果12月4日被发表在《自然》杂志上。

2023年7月26日,韩国研究团队发布论文,声称成功发现了世界上首个室温超导体“LK-99”,该材料在常压下127摄氏度就可以达到超导临界点。[2]

2023年8月3日,韩国超导低温学会LK-99验证委员会回答韩联社质询时表示,韩国量子能源研究中心研究团队开发的“LK-99”不足以证明是常温超导体,因为在与LK-99相关的视频和论文中,并没有出现迈斯纳效应,即特定物质消除电阻,其内部磁场会被排出。验证委员会解释称,LK-99漂浮在磁铁上的视频远未达到固定磁通量的效果,论文中的数据也与一般的超导图不同。[1]

机理解释

一个由德国马克斯普朗克物质结构与动力学研究所参与的国际小组,2014年12月4日在《自然》杂志上报道了他们的此项工作。研究组相信这一现象背后的原理是:激光脉冲导致晶体晶格中的单个原子发生短暂变动,从而导致超导性的产生。这项成果将有望帮助现有低温超导材料实现在高得多的温度条件下实现超导性,因此拥有广泛应用前景。

研究情况

火力发电厂可以建造在任何地方,但利用可再生能源的绿色电厂就要谨慎选址了,因为高原上才有强劲的风,沙漠中方能长沐日光,因此要向绿色能源转变, 我们面临的最大挑战之一,就是如何跨越数百千米的距离,将这些来自偏远之地的电力输送至城市。最先进的超导电缆可将电能输送几千千米而仅有百分之几的损耗。但麻烦的是,电缆必须一直浸在77K(约 -196℃)的液氮之中。因此,如果要架设这样的电缆,每隔一千米左右就必须安装泵机和冷却设备,大大增加了超导电缆方案的成本和复杂程度。

能在常温常压下工作的超导体,将使全球化电力供应梦想成真。通过横穿地中海底的超导电缆,非洲撒哈拉沙漠的太阳也可以给西欧供电。然而,制作室温超 导体的秘诀至今依然成谜,与 1986年时没有什么两样——研究人员就是在那一年,首次制备出了可在相对“高温”的液氮中实现超导的物质(此前的超导体需要冷却至 23K以下)。

2008年,一大类以铁元素为基质的全新超导体(铁基超导体)被人发现。理论学家能够找到高温超导体工作机制的希望也因此而大增(参见《环球科学》 2009年第 8期《高温超导“铁”的飞跃》)。如果掌握了这一机制,室温超导体也许就不再遥不可及。遗憾的是,目前进展仍很缓慢。

2023年3月7日(美国太平洋时间),纽约罗彻斯特大学的Ranga Dias及其团队在拉斯维加斯举行的美国物理学会会议上宣布:在室温超导领域取得重大突破。在主题为《常温近常压条件下氢化物超导特性》的报告中,Dias团队通过使用由氢、氮和镥制成的新材料,在1GPa压强条件和294K(即21摄氏度)的常温条件下观察到该材料的超导特性。其中1GPa的压强条件相当于约1万倍大气压强,与此前类似研究实现常温超导特性所需的近200万倍相比已有巨大突破,与工程材料之中超高强度钢的屈服强度属同一数量级。Dias团队因此宣称他们已经创造出一种可以在室温以及较低压力条件下工作的超导体,并表示“这是可用于实际工程应用的新材料开端”。[3]

相关百科
返回顶部
产品求购 求购