离散时间傅里叶变换

目录导航

定义

一组离散的实数或复数:x[n](n 为所有整数)的离散时间傅里叶变换是产生以频率为变量的周期函数的一个傅里叶级数。当频率变量 ω 的单位是归一化的弧度/样本时,周期为 2π,而傅里叶级数为:

()

此频率域函数的性质源于泊松求和公式。令 X(f) 为任意函数 x(t) 的傅里叶变换,采样间隔为 T(秒),等价于序列 x[n](或与之成正比),即 。则以傅里叶级数表示的周期函数是 X(f) 的周期求和。要用以赫兹(周期/秒)为单位的频率 的话就会是:

()

整数 k 的单位为转/样本,采样频率是 1/T,fs(样本/秒)。因而 X1/T(f) 含有移位 fs 倍数赫兹了的 X(f) 的精确副本,并加和在一起。对于足够大的 fs ,可以在区间 [−fs/2, fs/2] 有很少或没有失真(混叠)地观察到 k=0 项。在图1中,该左上角分布的末端在左下图中被周期求和的混叠遮盖住了。

我们还注意到 的傅里叶变换。因此,DTFT的另一个定义为:

()

调制的狄拉克梳状函数是一个数学抽象,有时被称为脉冲采样。

频谱的周期性与混叠

()

频谱周期性

()

频谱混叠

()

DTFT与DFT

DTFT与DFT频率分辨率

具有周期性:

显然有:

以DFT近似DTFT

根据DTFT的定义,有

即,f(nT)的DTFT是f(t)的傅里叶变换以Ω为周期的延拓,这也从另一个角度证明了DTFT的周期性。很显然,如果f(t)的频谱带不限于Nyquist间隔([-Ω/2, Ω/2]),f(nT)的DTFT必然发生混叠(aliasing),如右图所示。混叠使得信号的低频部分被高频部分“污染”,造成信号的失真。为避免这种情况,通常在进行进一步的数字信号处理之前要对采样序列进行抗混叠滤波(anti-aliasing filtering),这一处理通常是由低通滤波器除去高频分量实现的。

DTFT与Z变换

DFT(离散傅里叶变换)是对离散周期信号的一种傅里叶变换,对于有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT的离散谱是对DTFT连续谱的等间隔采样。

相关百科
返回顶部
产品求购 求购