机会约束规划

机会约束规划

中文名 机会约束规划
提出时间 1959年提出
目录导航

概述

  机会约束规划(Chance Constrained Programming)    随机规划的三个分支是期望值模型、机会约束规划和相关机会规划。其中机会约束规划是由查纳斯(A.Charnes)和库伯(W.W.Cooper)于1959年提出的,是在一定的概率意义下达到最优的理论。它是一种随机规划方法,针对约束条件中含有随机变量,并且必须在观测到随机变量的实现之前做出决策的问题。   机会约束规划考虑到所做决策在不利的情况发生时可能不满足约束条件,而采用一种原则:即允许所做决策在一定程度上不满足约束条件,但该决策使约束条件成立的概率不小于某一个足够小的 置信水平。对一些特殊情况,机会约束规划问题可以转化为等价的确定性数学规划问题,但对于较复杂的机会约束规划问题,则要利用基于 随机模拟的遗传算法来求解一般机会约束规划问题以及机会约束 多目标规划和机会约束目标规划问题。   机会约束规划主要特点是约束条件中含有随机参数,其一般形式如下:   其中Ai = (aij) sm,bi为s维 向量,且Ai与bi部分或全部为随机变量,c ∈Rm为系数,x∈Rm为决策向量,0 < αi < 1。

解法

  机会约束规划的解法大致有两种。其一,将机会约束规划转化为确定性规划,然后用确定性规划的理论去解决;其二,通过随机模拟技术处理机会约束条件,并利用遗传算法的优胜劣汰,得到机会约束规划的 目标函数最优值和 决策变量最优 解集。   机会约束规划的目标函数最优值及决策变量的最优解集与模型中的随机系数有关,因而具有 随机性。从 数理统计的角度看,对这种随机的目标函数最优值以及决策变量的最优解集可以作出某种置信水平的 区间估计。衡量区间估计的精度的一个重要指标是估计区间的长度,估计区间长度越小, 估计精度就越大;反之,估计区间长度越大,估计精度就越小。

相关百科
返回顶部
产品求购 求购