下表为几种自然二进制码与格雷码的对照表:
┌────┬──────┬───┬────┬──────┬────┐
│十进制数│自然二进制数│格雷码│十进制数│自然二进制数│ 格雷码 │
│0 │0000 │0000 │8 │1000 │1100 │
│1 │0001 │0001 │9 │1001 │1101 │
│2 │0010 │0011 │10 │1010 │1111 │
│3 │0011 │0010 │11 │1011 │1110 │
│4 │0100 │0110 │12 │1100 │1010 │
│5 │0101 │0111 │13 │1101 │1011 │
│6 │0110 │0101 │14 │1110 │1001 │
│7 │0111 │0100 │15 │1111 │1000 │
└────┴──────┴───┴────┴──────┴────┘
一般的,普通二进制码与格雷码可以按以下方法互相转换:
二进制码->格雷码(编码):从最右边一位起,依次将每一位与左边一位异或(XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是0);
格雷码-〉二进制码(解码):从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变).
原码:p[0~n];格雷码:c[0~n](n∈N);编码:c=G(p);解码:p=F(c);书写时从左向右标号依次减小.
编码:c
解码:p[n]=c[n],p
Gray Code是由贝尔实验室的Frank Gray在20世纪40年代提出的(是1880年由法国工程师Jean-Maurice-Emlle
Baudot发明的),用来在使用PCM(Pusle Code Modulation)方法传送讯号时避免出错,并于1953年3月17日取得美国专利。由定义可知,Gray Code的编码方式不是唯一的,这里讨论的是最常用的一种。