图像匹配

图像匹配

目录导航

图像匹配

   图像匹配是指通过一定的匹配 算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜索区中相同大小的窗口的 相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。其实质是在 基元相似性的条件下,运用匹配准则的最佳搜索问题。图像匹配主要可分为以 灰度为基础的匹配和以特征为基础的匹配。

  1、灰度匹配

  灰度匹配的基本思想:以统计的观点将图像看成是二维信号,采用统计相关的方法寻找信号间的相关匹配。利用两个信号的相关函数,评价它们的相似性以确定同名点。

  灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。

  最经典的灰度匹配法是归一化的灰度匹配 法,其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵,与参考图像的所有可能的窗口灰度阵列,按某种相似性度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。

  利用灰度信息匹配方法的主要缺陷是计算量太大,因为使用场合一般都有一定的速度要求,所以这些方法很少被使用。现在已经提出了一些相关的快速算法,如幅度排序相关算法,FFT相关算法和分层搜索的序列判断算法等。

  2、特征匹配

  特征匹配是指通过分别提取两个或多个图像的特征(点、线、面等特征),对特征进行参数描述,然后运用所描述的参数来进行匹配的一种算法。

  基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等。

  特征匹配首先对图像进行预处理来提取其高层次的特征,然后建立两幅图像之间特征的匹配对应关系,通常使用的特征基元有点特征、边缘特征和区域特征。 特征匹配需要用到许多诸如矩阵的运算、梯度的求解、还有傅立叶变换和泰勒展开等数学运算。

  常用的特征提取与匹配方法有:统计方法、几何法、模型法、信号处理法、边界特征法、傅氏形状描述法、几何参数法、形状不变矩法等。

  基于图象特征的匹配方法可以克服利用图象灰度信息进行匹配的缺点,由于图象的特征点比较象素点要少很多,大大减少了匹配过程的计算量;同时,特征点的匹配度量值对位置的变化比较敏感,可以大大提高匹配的精确程度;而且,特征点的提取过程可以减少噪声的影响,对灰度变化,图象形变以及遮挡等都有较好的适应能力。所以基于图象特征的匹配在实际中的应用越来越广泛。所使用的特征基元有点特征(明显点,角点,边缘点等),边缘线段等。

  3、比较

  特征匹配与灰度匹配的区别:灰度匹配是基于像素的,特征匹配则是基于区域的,特征匹配在考虑像素灰度的同时还应考虑诸如空间整体特征、空间关系等因素。

  特征是图象内容最抽象的描述,与基于灰度的匹配方法相比,特征相对于几何图象和辐射度影响来说更不易变化,但特征提取方法的计算代价通常较大,并且需要一些自由参数和事先按照经验选取的阈值,因而不便于实时应用。同时,在纹理较少的图象区域提取的特征的密度通常比较稀少,使局部特征的提取比较困难。另外,基于特征的匹配方法的相似性度量也比较复杂,往往要以特征属性、启发式方法及阀方法的结合来确定度量方法。

相关百科
返回顶部
产品求购 求购