二阶导数记作即y''=(y')'。[1]
例如:y=x²的导数为y'=2x,二阶导数即y'=2x的导数为y''=2。
二阶导数(3)(1)切线斜率变化的速度,表示的是一阶导数的变化率。
(2)函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。[1]
这里以物理学中的瞬时加速度为例:
根据定义有
可如果加速度并不是恒定的,某点的加速度表达式就为:
a=limΔt→0 Δv/Δt=dv/dt(即速度对时间的一阶导数)
又因为v=dx/dt 所以就有:
a=dv/dt=d²x/dt² 即元位移对时间的二阶导数
将这种思想应用到函数中 即是数学所谓的二阶导数
f'(x)=dy/dx (f(x)的一阶导数)
f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)
设,则,应视为y的函数[1]
则
=(定义)
=
=(复合函数求导,x是中间变量)
=
=
所以,反函数的二阶导数不是原函数二阶导数的倒数。
(1)如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。[2]
几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
(2)判断函数极大值以及极小值。
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
(3)函数凹凸性。
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;
(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。