问答
首页
找产品
找企业
资讯
论坛
百科
问答
维修
服务
品牌
改装
首页
问答
全部分类
问答
精选
待解决
问
汽车的胎压应该注意哪些数据?
3638605d6d04
、是每条轮胎是否都在厂家建议的标准胎压值范围内 第二、就是四条轮胎的压力是否一样,如果四条轮胎的压力差异过大,也是一个安全隐患。 夏季胎压按照厂家要求设定就可以,不用刻意降低胎压。
2024-01-10
1条回答
问
骏捷和尊驰前束数据一样吗
a121d4b04862
同样的底盘数据通用
2024-01-02
1条回答
问
如何数据库加密?
盛志天下
这个问太简单了!!只要去下载一个设置密码软件就可以给数据库加密了!!!
2023-08-15
4条回答
问
数据加密技术能解决数据安全问题吗
伤过疼过大爷我何曾退过-
数据加密应该属于服务器/网站安全吧
2023-08-15
2条回答
问
什么是“数据手套”
匿名用户
数据手套是虚拟仿真中最常用的交互工具。数据手套设有弯曲传感器,弯曲传感器由柔性电路板、力敏元件、弹性封装材料组成,通过导线连接至信号处理电路;在柔性电路板上设有至少两根导线,以力敏材料包覆于柔性电路板大部,再在力敏材料上包覆一层弹性封装材料,柔性电路板留一端在外,以导线与外电路连接。把人手姿态准确实时地传递给虚拟环境,而且能够把与虚拟物体的接触信息反馈给操作者。使操作者以更加直接,更加自然,更加有效的方式与虚拟世界进行交互,大大增强了互动性和沉浸感。并为操作者提供了一种通用、直接的人机交互方式,特别适用于需要多自由度手模型对虚拟物体进行复杂操作的虚拟现实系统。数据手套通用种类:5触点数据手套主要是测量手指的弯曲(每个手指一个测量点)。14触点数据手套主要是测量手指的弯曲(每个手指两个测量点)。 18个传感器触觉数据手套28个传感器触觉数据手套骨架式力反馈数据手套数据手套本身不提供与空间位置相关的信息,必须与位置跟踪设备连用。
2023-07-17
1条回答
问
数据挖掘技术是否一定得在数据库中实现?
γaη .
肯定是了。不过数据库的定义比较广泛,可以是关系型数据库,也可能是文件型数据库。但基本上提到数据挖掘,一般都是指针对关系型数据库进行的。
2023-07-15
1条回答
问
大数据和数据挖掘哪个更有发展前途
Frank
大数据是包含数据挖掘的,数据挖掘是大数据分支中的一项,也是基础,学习BI方向的话,数据挖掘是基础,两者是息息相关的,数据挖掘的概念出来的比较早,啤酒和尿布的典故你应该知道,早期数据仓库建模就已经用到了数据挖掘,而大数据是这几年比较火的,趋势很好,以后都是大数据时代了,目前很多大型企业都在做大数据(如解决方案供应商:IBM、ORACLE、SAP、EMC、华为等等;自研:淘宝、腾讯等等;甲方:移动、电信等等)择业前景还是很好的,大数据内容很丰富,有hadoop、流处理、分布式、NAS/SAN等等,对你以后的发展帮助还是比较大的。我的建议是大数据。望采纳。
2023-07-15
3条回答
问
请问数据挖掘与数据分析的区别(详细一些),谢谢
心灵净土
数据分析和数据挖掘并不是相互独立的,数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。但是如果要分析已有信息背后的隐藏信息,而这些信息通过观察往往是看不到的,这是就需要用到数据挖掘,作为分析之前要走的一个门槛。数据挖掘不是简单的认为推测就可以,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。这里可以使用亿信华辰一站式数据分析平台ABI,亿信ABI融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。其中数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。帮助企业发现潜在的信息,挖掘数据的潜在价值。
2023-07-10
4条回答
问
数据挖掘中的数据预处理技术有哪些,它们分别适用于哪些场合
匿名
一、数据挖掘工具分类数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。二、数据挖掘工具选择需要考虑的问题数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此我们在选择数据挖掘工具的时候,要全面考虑多方面的因素,主要包括以下几点:(1)可产生的模式种类的数量:分类,聚类,关联等(2)解决复杂问题的能力(3)操作性能(4)数据存取能力(5)和其他产品的接口三、数据挖掘工具介绍:1.QUESTQUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。各种开采算法具有近似线性计算复杂度,可适用于任意大小的数据库。算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。为各种发现功能设计了相应的并行算法。2.MineSetMineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:MineSet以先进的可视化显示方法闻名于世。支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。操作简单、支持国际字符、可以直接发布到Web。3.DBMinerDBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。提出了一种交互式的类SQL语言——数据开采查询语言DMQL。能与关系数据库平滑集成。实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。4.IntelligentMiner由美国IBM公司开发的数据挖掘软件IntelligentMiner是一种分别面向数据库和文本信息进行数据挖掘的软件系列,它包括IntelligentMinerforData和IntelligentMinerforText。IntelligentMinerforData可以挖掘包含在数据库、数据仓库和数据中心中的隐含信息,帮助用户利用传统数据库或普通文件中的结构化数据进行数据挖掘。它已经成功应用于市场分析、诈骗行为监测及客户联系管理等;IntelligentMinerforText允许企业从文本信息进行数据挖掘,文本数据源可以是文本文件、Web页面、电子邮件、LotusNotes数据库等等。5.SASEnterpriseMiner这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。SASEnterpriseMiner是一种通用的数据挖掘工具,按照"抽样--探索--转换--建模--评估"的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的"端到端"知识发现。6.SPSSClementineSPSSClementine是一个开放式数据挖掘工具,曾两次获得英国政府SMART创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准--CRISP-DM。Clementine的可视化数据挖掘使得"思路"分析成为可能,即将集中精力在要解决的问题本身,而不是局限于完成一些技术性工作(比如编写代码)。提供了多种图形化技术,有助理解数据间的关键性联系,指导用户以最便捷的途径找到问题的最终解决法。7.数据库厂商集成的挖掘工具SQLServer2000包含由Microsoft研究院开发的两种数据挖掘算法:Microsoft决策树和Microsoft聚集。此外,SQLServer2000中的数据挖掘支持由第三方开发的算法。Microsoft决策树算法:该算法基于分类。算法建立一个决策树,用于按照事实数据表中的一些列来预测其他列的值。该算法可以用于判断最倾向于单击特定标题(banner)或从某电子商务网站购买特定商品的个人。Microsoft聚集算法:该算法将记录组合到可以表示类似的、可预测的特征的聚集中。通常这些特征可能是隐含或非直观的。例如,聚集算法可以用于将潜在汽车买主分组,并创建对应于每个汽车购买群体的营销活动。,SQLServer2005在数据挖掘方面提供了更为丰富的模型、工具以及扩展空间。包括:可视化的数据挖掘工具与导航、8种数据挖掘算法集成、DMX、XML/A、第三方算法嵌入支持等等。OracleDataMining(ODM)是Oracle数据库10g企业版的一个选件,它使公司能够从最大的数据库中高效地提取信息并创建集成的商务智能应用程序。数据分析人员能够发现那些隐藏在数据中的模式和内涵。应用程序开发人员能够在整个机构范围内快速自动提取和分发新的商务智能—预测、模式和发现。ODM针对以下数据挖掘问题为Oracle数据库10g提供支持:分类、预测、回归、聚类、关联、属性重要性、特性提取以及序列相似性搜索与分析(BLAST)。所有的建模、评分和元数据管理操作都是通过OracleDataMining客户端以及PL/SQL或基于Java的API来访问的,并且完全在关系数据库内部进行。IBMIntelligentMiner通过其世界领先的独有技术,例如典型数据集自动生成、关联发现、序列规律发现、概念性分类和可视化呈现,它可以自动实现数据选择、数据转换、数据发掘和结果呈现这一整套数据发掘操作。若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。现在,IBM的IntelligentMiner已形成系列,它帮助用户从企业数据资产中识别和提炼有价值的信息。它包括分析软件工具----IntelligentMinerforData和IBMIntelligentMinerforText,帮助企业选取以前未知的、有效的、可行的业务知识----如客户购买行为,隐藏的关系和新的趋势,数据来源可以是大型数据库和企业内部或Internet上的文本数据源。然后公司可以应用这些信息进行更好、更准确的决策,获得竞争优势。
2023-07-10
2条回答
问
怎么做好数据分析和数据挖掘?
匿名
必要的数学统计知识,例如平均值,方差,T检验,F检验等必要的工具软件,例如EXCEL,SAS,SPSS 及相关的挖掘软件业务理解或者商业理解,千万不能埋头光研究数据,要和实际业务结合起来出模型,出报告,解决问题,没有用处的或者不能应用的数据分析是做无用功
2023-06-25
2条回答
上一页
7/39
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
下一页
求购
首页
找产品
找企业
论坛
我的