问答
首页
找产品
找企业
资讯
论坛
百科
问答
维修
服务
品牌
改装
首页
问答
全部分类
问答
精选
待解决
问
曲轴和凸轮轴的关系
hcws955722
楼上说的不对,二冲程发动机没有凸轮轴,四冲程发动机的曲轴是把活塞的上下往复运动转变为旋转运动,因为曲轴旋转两圈发动机才做一次功,所以还要利用曲轴的惯性来完成进气,压缩,排气。凸轮轴通过链条或皮带与曲轴连接,来控制气门的开合。二冲程发动机用气缸上的气道来配气,所以没有凸轮轴和气门,结构比四冲程发动机简单很多。四冲程发动机结构二冲程发动机原理。
2023-02-04
2条回答
问
什么是电控凸轮轴?
09c272f57c94
凸轮轴是活塞发动机里的一个部件。它的作用是控制气门的开启和闭合动作。虽然在四冲程发动机里凸轮轴的转速是曲轴的一半(在二冲程发动机中凸轮轴的转速与曲轴相同),不过通常它的转速依然很高,而且需要承受很大的扭矩,因此设计中对凸轮轴在强度和支撑方面的要求很高,其材质一般是特种铸铁,偶尔也有采用锻件的。由于气门运动规律关系到一台发动机的动力和运转特性,因此凸轮轴设计在发动机的设计过程中占据着十分重要的地位。
2023-02-04
1条回答
问
凸轮轴上开档的作用?
de4da9eafea8
凸轮轴是控制气门开闭的。四冲程的工作循环。吸、压、暴、排。不同时刻进气,排气的需要也不同。需要控制气门的开闭时间。凸轮轴的凸轮就是挤压气门顶杆下行从而开启气门的。在发动机中,混合气爆炸做功,活塞下行。活塞连杆带动曲轴转动。曲轴把转速和扭矩传递给变速箱。同时曲轴通过正时皮带(或正时链条)带动凸轮轴转动。曲轴转两圈,凸轮轴转一圈。凸轮轴有两个,一个排气一个进气。
2023-02-04
2条回答
问
凸轮轴有什么作用。
chenxiantao2
你好,朋友按次数打开气门,使汽油由气门进入燃烧室进行燃烧,再由排气门将废气排放如不足,请追问,满意请采纳
2023-02-04
1条回答
问
凸轮轴有什么构造?
34a3d5fe4723
凸轮轴的主体是一根与气缸组长度近似相同的圆柱形棒体。上面套有若干个凸轮,用于驱动气门。凸轮轴是通过凸轮轴轴颈支撑在凸轮轴轴承孔内的,因此凸轮轴轴颈数目的多少是影响凸轮轴支撑刚度的重要因素。如果凸轮轴刚度不足,工作时将发生弯曲变形,影响配气定时。凸轮的侧面呈鸡蛋形。其设计的目的在于保证气缸充分的进气和排气。另外考虑到发动机的耐久性和运转的平顺性,气门也不能因开闭动作中的加减速过程产生过多过大的冲击,否则就会造成气门的严重磨损、噪声增加或是其它严重后果。因此,凸轮和发动机的功率、扭矩输出以及运转的平顺性有很直接的关系。
2023-02-04
2条回答
问
汽车凸轮轴的作用
letong521
凸轮轴属于发动机中配气机构的组成部分,上面的凸轮旋转就不停的使进气门、排气门打开关闭。凸轮轴上还有一个偏心轮,是用来带动汽油泵的运转的。还有一个斜齿轮、是连接到机油泵上的,带动整个润系统的。 简单的介绍一下,如果需要更详细的请再次补充!
2023-02-04
2条回答
问
电控凸轮轴是甚么有甚么作用?
1e2d481a032f
通过凸轮轴的不断旋转,推动气门顶杆上下运动,进而控制气门的开启与关闭。通过改变凸轮轴的曲线,可精确调剂气门开启、关闭时间。
2023-02-04
1条回答
问
凸轮轴有什么作用
lengshan868
按凸轮轴数目的多少,可分为单顶置凸轮轴(SOHC)和双顶置凸轮轴(DOHC)两种。单顶置凸轮轴就是只有一根凸轮轴,双顶置凸轮轴就是有两根,这是太直白的解释。 单顶置凸轮轴在气缸盖上用一根凸根轴,直接驱动进、排气门,它具有结构简单,适用于高速发动机。以往一般采用的侧置凸轮轴,即凸轮轴在气缸侧面,由正时齿轮直接驱动。为了把凸轮轴的转动变换为气门的往复运动,必须使用气门挺杆来传递动力。这样,往复运动的零件较多,惯性质量大,不利于发动机高速运动。而且,细长的挺杆具有一定的弹性,容易引起振动,加速零件磨损,甚至使气门失去控制。 顶置双凸轮轴是在缸盖上装有两根凸轮轴,一根用于驱动进气门,另一根用于驱动排气门。采用双顶置凸轮轴对凸轮轴和气门弹簧的设计要求不高,特别适用于气门V形配置的半球形燃烧室,也便于和四气门配气机构配合使用。
2023-02-04
2条回答
问
汽车凸轮轴在哪
613699f262da
您好,凸轮轴在发动机上部,主要用来控制进气和排气的,在发动机缸盖里面,一般把气门室盖打开就可以看到了!【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】
2023-02-04
5条回答
问
凸轮轴是什么工作的
1e0b90357995
凸轮轴如何工作的? 在本文中,你会发现凸轮轴影响发动机性能。你会得到不同发动机布局的直观印象。像顶置式凸轮轴(SOHC)和双顶置式凸轮轴(DOHC)的实际工作情况。然后我们看一下一些能调整凸轮轴从而使发动机运转速度更高效的方法。 如果你看了“汽车发动机是怎样工作的”这篇文章,你会知道阀门让空气/燃料混合物进入发动机并让废气排出。凸轮轴采用凸角(称为凸轮)在凸轮轴旋转时推动阀门打开;阀门上的弹簧使它们回到闭合位置。这是一个关键的工作,对发动机在不同速度下的性能有重大影响。在本文下一页中你能看到活动图形从而让你知道一个性能凸轮轴和一个标准的凸轮轴。 凸角是关键 凸轮轴的关键部分是凸轮。在凸轮轴旋转时,凸轮在活塞运动时打开进气阀和闭合排气阀。这里显示了凸轮轴的凸轮的形状与发动机在不同速度下的工作状况有直接关系。 为了理解为什么是这样,想象一下我们的发动机运转极慢。——每分钟仅10或20转(RPM)——这样活塞需几秒种完成一个循环。现实中一个发动如此之慢是不可能的,但让我们想象一下它是这么慢。在这种的慢速度下,我们希望凸轮的形状如下: 在进气行程中活塞向下移动到(称为上止点,或TDC)时,进气阀能打开。在活塞移到上面时进气阀能关闭。在压缩行程快结束时在活塞移到(称为下止点,或BDC),排气阀能打开,并在活塞完成压缩行程时关上。这一建构使发动机运转很好,只要发动机运转速度很慢。但如果转速提高了呢?让我们来解决这个问题。 降低发动机转速 当你增加发动机转速时,10到20转配置使凸轮轴工作不是很好。如果发动机的转速是4,000转每分钟,阀门就要每分钟打开和关闭2000次,即33次每秒。在这种的速度下,活塞运动很快,从而空气/燃料混合物进入气缸的速度也很快。 当进气阀打开,活塞开始它的进气行程时,空气/燃料混合物在进气涡轮开始加速到气缸。活塞在进气行程中运动到气缸底部时,,空气/燃料混合物的运动速度达到很快。如果我们一下子关掉进气阀,所有的空气/燃料混合物将速度停止,不能进入气缸。 通过使进气阀打开时间延长,使空气/燃料混合物进入气缸,与此同时活塞进行压缩行程。所以发动机转速越快,空气/燃料混合物运动速度也越快,我们希望进气阀打开的时间越长。我们也希望阀门在较快速度下打开地大一些——这一参数,称为气门升程,是由凸轮的形状所决定的。 任何所给的凸轮只有在某一发动机速度时是完美的。在其它速度时,发动机就不能运行得很好。凸轮轴装置因此通常是一个权宜的配置。这就是为什么凸轮制造商在发动机速度改变时设计出不同的凸轮。 凸轮轴配置 发动机上凸轮轴的有几个不同配置。我们来谈谈几个通用部件。你可能听到过这些术语: 顶置凸轮轴(SOHC) 双顶置式凸轮轴(DOHC) 推杆 让我们先来看看顶置凸轮轴。 这一配置相当于一个发动机每头有一个凸轮。如果是一个单列式四气缸或单列式六气缸发动机,这里会有一个凸轮。如果是V-6 或 V-8发动机,这里会有二个凸轮。 凸轮开动摇臂按到阀门上,打开它们。弹簧使阀门回到它们闭合的位置。这些弹簧必须相当坚固因为发动机速度很快,阀门被按下很快,弹簧必须使摇臂与这些阀门接触。如果弹簧不是很坚固,阀门可能会脱离摇臂同时迅速跳回。这将导致凸轮和摇臂额外的磨损。 在顶置凸轮轴和双顶置式凸轮轴发动机上,凸轮由凸轮轴驱动,通过一根到皮带或链条,称为正时皮带或正时链。这些皮带和链子在固定间隔必须被更换或调整。如果正时皮带断了,凸轮会停止旋转,活塞会撞到排气阀上。 双顶置式凸轮轴 一个双顶置式凸轮轴发动机每头有两个凸轮。所以单列式发动机有两个凸轮,V发动机有四个凸轮。通常双顶置式凸轮轴用于每个气缸有四个或更多阀门的发动机上——一个凸轮轴不能驱动所有的阀门。采用双顶置式凸轮轴的主要原因是可以使用更多的进气和排气阀。更多的阀门意味着进气和排气流动更自由,因为它有更多可以流通的升程。这就增加了发动机的功率。 就像顶置式凸轮轴发动机和双顶置式凸轮轴发动机,在推杆发动机阀门位于顶部,在气缸的上面。在推杆发动机的关键区别是凸轮位于发动机气缸体内部而不是在气缸的顶部。 凸轮驱动推杆经过气缸箱体并进入气缸顶部移动摇臂。这些推杆又增加了系统的质量,从而增加了阀门弹簧的载荷。这能限制推杆发动机速度;顶置式凸轮轴发动机在系统取消了推杆,从而使更快速度的发动机成为可能。 推杆发动机中的凸轮通常由齿轮或短链驱动。齿轮驱动通常与皮带驱动相比不易断裂,所以在顶置式凸轮轴发动机经常看到。 可变式气门正时 这里有几种凸轮制造商改变气门正时的办法。用在本田发动机上的一个系统称为可变气门正时和升程电子控制系统(VTEC) 可变气门正时和升程电子控制系统(VTEC)是本田发动机上一个电子机械系统,它能允许发动机有多个凸轮轴。VTEC发动机有一个额外的进气凸轮并有一个与之相连的摇臂。凸轮的形状能使进气阀升程比其它凸轮形状大。在发动机速度较低时,这个摇臂不与任何阀门相连。在高速时,活塞锁住额外摇臂,让两个摇臂控制两个进气阀。 一些汽车采用先进的气门正时装置。这不会使阀门升程更大,它打开和闭合它们更迟。它通过旋转凸轮几度来实现。 如果进气阀通常在活塞到达上止点(TDC)旋转10度,并在到达上止点(TDC)后旋转90度关上,总的持续时间为200度。打开和关闭的时间可以通过在凸轮旋转时旋转到前面一点的机构转移。所以可以在活塞到达上止点(TDC)旋转10度,并在到达上止点(TDC)后旋转210度关上。在随后20度时关闭阀门是好的,但如果它能在进气阀打开时增加持续时间会更好。 Ferrari已经有一个做到一点的好方法。凸轮在Ferrari 发动机上有一个三维形状可以随凸轮的长度而变化。在凸轮的一端是一个较不灵巧的凸轮形状,而在另一端是一个灵巧的凸轮形状。凸轮平稳地把这两种形状结合在一起。一个机构能侧面地滑动整个凸轮从而使阀门能采用凸轮的不同的部分。轴仍然像普通凸轮一样旋转——但随着发动机速度和载荷增加逐渐侧面地滑动凸轮,从而气门正时被优化。 一些发动机制造商正在试验气门正时无限可变系统。比如,想象每个阀门有一个电磁开关,它能过计算机而不是凸轮控制打开和关闭阀门。有了这类系统,你就能在发动机每个转速时达到最大的发动机性能。盼望将来能实现的东西。
2023-02-04
2条回答
上一页
6/80
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
下一页
求购
首页
找产品
找企业
论坛
我的