问答
首页
找产品
找企业
资讯
论坛
百科
问答
维修
服务
品牌
改装
首页
问答
全部分类
问答
精选
待解决
问
前轮定位数据
1e2d481a032f
------------------------------------------------------------------------------------- [邹军新] 全世界的车前束值你都调 0-8mm,差不了多少。不要相信反前束的话。
2023-09-09
2条回答
问
遥感数据的分类
匿名用户
原发布者:siny1013遥感图像解译遥感图像解译分为两种:•目视解译:指专业人员通过直接观察或借助判读仪器在遥感图像上获取特定目标地物信息的过程。•遥感图像计算机解译:以计算机系统为支撑环境,利用模式识别技术与人工智能技术相结合,根据遥感图像中目标地物的各种影像特征,结合专家知识库中目标地物的解译经验和成像规律等知识进行分析和推理,实现对遥感图像的理解,完成对遥感图像的解译。有监督分类、非监督分类、模式识别、神经网络分类、分形分类、模糊分类、人工智能等数据挖掘技术方法一电磁辐射与地物光谱特征(遥感的物理基础)电磁波谱与电磁辐射波:波是振动在空间的传播。波动是各质点在平衡位置振动而能量向前传播的现象。机械波:由振源发出的振动在弹性介质中的传播电磁波:由振源发出的电磁振荡在空间的传播•电磁能量的传递过程(包括辐射、吸收、反射和透射等)称为电磁辐射。•本质的区别:电磁波在真空中也能传播;机械波必须在弹性媒质中才能传播•两者在运动形式上都是波动。•基本的波动形式有两种:横波:质点的振动方向与波的传播方向垂直。如水波、电磁波。纵波:质点的振动方向与波的传播方向相同。如声波。•电磁波一定是横波,机械波却可以是横波也可以是纵波。1.电磁波谱•根据电磁波在真空中传播的波长或频率的大小,按递增或递减顺序依次排列所构成的图谱叫电磁波谱。•该波谱以频率从高到低排列(即按波长从
2023-07-17
6条回答
问
数据挖掘与数据分析的主要区别是什么
匿名
总结一下主要有以下几点:1、计算机编程能力的要求作为数据分析很多情况下需要用到成型的分析工具,比如EXCEL、SPSS,或者SAS、R。一个完全不懂编程,不会敲代码的人完全可以是一名能好的数据分析师,因为一般情况下OFFICE包含的几个工具已经可以满足大多数数据分析的要求了。很多的数据分析人员做的工作都是从原始数据到各种拆分汇总,再经过分析,最后形成完整的分析报告。当然原始数据可以是别人提供,也可以自己提取(作为一名合格的数据分析师,懂点SQL知识是很有好处的)。而数据挖掘则需要有编程基础。为什么这样说呢?举两个理由:第一个,目前的数据挖掘方面及相关的研究生方面绝大多数是隶属于计算机系;第二点,在招聘岗位上,国内比较大的公司挂的岗位名称大多数为“数据挖掘工程师”。从这两点就可以明确看出数据挖掘跟计算机跟编程有很大的联系。2、在对行业的理解的能力要想成为一名优秀的数据分析师,对于所从事的行业有比较深的了解和理解是必须要具备的,并且能够将数据与自身的业务紧密结合起来。简单举个例子来说,给你一份业务经营报表,你就能在脑海中勾画出目前经营状况图,能够看出哪里出现了问题。但是,从事数据挖掘不一定要求对行业有这么高的要求。3、专业知识面的要求数据分析师出对行业要了解外,还要懂得一些统计学、营销、经济、心理学、社会学等方面的知识,当然能了解数据挖掘的一些知识会更好。数据挖掘工程师则要求要比较熟悉数据库技术、熟悉数据挖掘的各种算法,能够根据业务需求建立数据模型并将模型应用于实际,甚至需要对已有的模型和算法进行优化或者开发新的算法模型。想要成为优秀的数据挖掘工程师,良好的数学、统计学、数据库、编程能力是必不可少的。总之一句话来概括的话,数据分析师更关注于业务层面,数据挖掘工程师更关注于技术层面。数据分析师与数据挖掘工程师的相似点:1、都跟数据打交道。他们玩的都是数据,如果没有数据或者搜集不到数据,他们都要丢饭碗。2、知识技能有很多交叉点。他们都需要懂统计学,懂数据分析一些常用的方法,对数据的敏感度比较好。3、在职业上他们没有很明显的界限。很多时候数据分析师也在做挖掘方面的工作,而数据挖掘工程师也会做数据分析的工作,数据分析也有很多时候用到数据挖掘的工具和模型,很多数据分析从业者使用SAS、R就是一个很好的例子。而在做数据挖掘项目时同样需要有人懂业务懂数据,能够根据业务需要提出正确的数据挖掘需求和方案能够提出备选的算法模型,实际上这样的人一脚在数据分析上另一只脚已经在数据挖掘上了。事实上没有必要将数据分析和数据挖掘分的特别清,但是我们需要看到两者的区别和联系,作为一名数据行业的从业者,要根据自身的特长和爱好规划自己的职业生涯,以寻求自身价值的最大化。sc-cpda 数据分析公众交流平台
2023-07-15
2条回答
问
数据挖掘是什么?
旧时光
数据挖掘(英语:Data mining),又译为数据采矿、数据挖掘。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
2023-07-15
2条回答
问
数据挖掘 概念与技术 数据挖掘导论 哪本好
匿名
数据挖掘导论适合新手入门,我个人比较推荐;数据挖掘概念与技术比较深,新手不容易懂,其实这本书的名气更大。
2023-07-14
2条回答
问
数据挖掘为什么要对数据进行分类
匿名用户
不太明白您说的分类是什么意思?是在数据预处理阶段,还是挖掘的目的?如果在数据预处理阶段,可能是只对某个领域的数据进行挖掘,从而可以得出更置信的结论;如果是挖掘目的,也就是模型的输出,这就比较好理解了。
2023-07-10
2条回答
问
数据挖掘数据预处理的关键技术有哪些
最终成了回忆
分箱方法是一种简单常用的预处理方法,通过考察相邻数据来确定最终值。所谓“分箱”,实际上就是按照属性值划分的子区间,如果一个属性值处于某个子区间范围内,就称把该属性值放进这个子区间所代表的“箱子”内。把待处理的数据(某列属性值)按照一定的规则放进一些箱子中,考察每一个箱子中的数据,采用某种方法分别对各个箱子中的数据进行处理。在采用分箱技术时,需要确定的两个主要问题就是:如何分箱以及如何对每个箱子中的数据进行平滑处理。
2023-07-10
1条回答
问
大数据的核心技术是什么?是数据挖掘吗?
热心问友
数据采集、分析、清理。再往上就是开发数据程序软件。机器学习人工智能。
2023-07-10
1条回答
问
进行数据价值挖掘的基础是什么大数据技术
匿名
数据挖掘的目的就是得出隐藏在数据中的有价值的信息。决策树算法:例如通过算法可以对已知的事物进行分类。关联规则算法:例如在超级中把啤酒和尿不湿放在一起,可以提高销量。等等吧。
2023-07-10
2条回答
问
数据挖掘算法以什么形式组织数据
幼稚不是心变老
数据挖掘算法是根据数据创建数据挖掘模型的一组试探法和计算。 为了创建模型,算法将首先分析您提供的数据,并查找特定类型的模式和趋势。
2023-06-25
2条回答
上一页
4/194
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
下一页
求购
首页
找产品
找企业
论坛
我的