原发布者:yh2006231.估计样本量的决定因素1.1资料性质计量资料如果设计均衡,误差控制得好,样本可以小于30例;计数资料即使误差控制严格,设计均衡,样本需要大一些,需要30-100例。1.2研究事件的发生率研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。1.3研究因素的有效率有效率越高,即实验组和对照组比较数值差异越大,样本量就可以越小,小样本就可以达到统计学的显著性,反之就要越大。1.4显著性水平即假设检验第一类(α)错误出现的概率。为假阳性错误出现的概率。α越小,所需的样本量越大,反之就要越小。α水平由研究者具情决定,通常α取0.05或0.01。1.5检验效能检验效能又称把握度,为1-β,即假设检验第二类错误出现的概率,为假阴性错误出现的概率。即在特定的α水准下,若总体参数之间确实存在着差别,此时该次实验能发现此差别的概率。检验效能即避免假阴性的能力,β越小,检验效能越高,所需的样本量越大,反之就要越小。β水平由研究者具情决定,通常取β为0.2,0.1或0.05。即1-β=0.8,0.1或0.95,也就是说把握度为80%,90%或95%。1.6容许的误差(δ)如果调查均数时,则先确定样本的均数()和总体均数(m)之间最大的误差为多少。容许误差越小,需要样本量越大。一般取总体均数(1-α)可信限的一半。1.7总体标准差(s)一般因未知而用样本标准差s代替。1.8双侧检验与单侧检验采用统计学检验时,当研究结果高于和低于效应指标的界限均有