价层电子对互斥理论

价层电子对互斥理论

目录导航

理论基础

价层电子对互斥理论的基础是, 分子或 离子的几何构型主要决定于与中心原子相关的 电子对之间的排斥作用。该电子对既可以是成键的,也可以是没有成键的(叫做孤对电子)。只有中心原子的 价层电子才能够对分子的形状产生有意义的影响。

分子中电子对间的排斥的三种情况为:

分子会尽力避免这些排斥来保持稳定。当排斥不能避免时,整个分子倾向于形成排斥最弱的结构(与理想形状有最小差异的方式)。

孤对电子间的排斥被认为大于孤对电子和成键电子对之间的排斥,后者又大于成键电子对之间的排斥。因此,分子更倾向于最弱的成-成排斥。

配体较多的分子中,电子对间甚至无法保持90°的夹角,因此它们的电子对更倾向于分布在多个平面上。

实际预测

下面是价层电子对互斥理论预测的分子形状表。

电子对数 杂化类型 轨道形状 孤电子对数 分子形状
2 sp 直线形 0 直线形 BeCl2、CO2
3 sp span="2">平面正三角形 span="2">0 1 平面正三角形 BCl3
3 sp V字形(角形、弯曲形) SO2
span="3">4 span="3">sp span="3">正四面体 0 正四面体 CH4
1 三角锥 NH3
2 V字形(角形、弯曲形) H2O
span="4">5 span="4">spd span="4">三角双锥 0 三角双锥 PCl5
1 变形四面体(跷跷板形) TeCl4
2 T字形 ClF3
3 直线形 I3
span="5">6 span="5">spd span="5">正八面体 0 正八面体 SF6
1 四方锥 IF5
2 平面十字形 ICl4
3 T字形  
4 直线形  
span="3">7 span="3">spd span="3">五角双锥 0 五角双锥 IF7
1 五角锥  
2 五角形  

范例

电子对数 杂化类型 轨道形状 孤电子对数 分子形状
2 sp 直线形 0 直线形 BeCl2、CO2
3 sp span="2">平面正三角形 span="2">0 1 平面正三角形 BCl3
3 sp V字形(角形、弯曲形) SO2
span="3">4 span="3">sp span="3">正四面体 0 正四面体 CH4
1 三角锥 NH3
2 V字形(角形、弯曲形) H2O
span="4">5 span="4">spd span="4">三角双锥 0 三角双锥 PCl5
1 变形四面体(跷跷板形) TeCl4
2 T字形 ClF3
3 直线形 I3
span="5">6 span="5">spd span="5">正八面体 0 正八面体 SF6
1 四方锥 IF5
2 平面十字形 ICl4
3 T字形  
4 直线形  
span="3">7 span="3">spd span="3">五角双锥 0 五角双锥 IF7
1 五角锥  
2 五角形  

例外

甲烷分子(CH )是 四面体结构,是一个典型的AX 型分子。中心碳原子周围有四个电子对,四个氢原子位于四面体的顶点,键角(H-C-H)为109°28'。

一个分子的形状不但受配位原子影响,也受孤对电子影响。 氨分子(NH )中心原子杂化类型与甲烷相同(sp),分子中有四个电子云密集区,电子云分布依然呈四面体。其中三个是成键电子对,另外一个是孤对电子。虽然它没有成键,但是它的排斥力影响着整个分子的形状。因此,这是一个AX E型分子,整个分子的形状是三角锥形,因为孤对电子是不可“见”的。

事实上,电子对数为七是有可能的,轨道形状是五角双锥。但是它们仅存在于不常见的化合物之中,比如在 六氟化氙中,有一对孤电子,它的构型趋向于八面体结构,因为孤对电子倾向于位于五角形的平面上。另一个例子为 七氟化碘,碘没有孤电子,七个氟原子呈五角双锥状排列。

电子对数为八也是有可能的,这些化合物一般为四方反棱柱体结构, 例子有八氟合氙酸亚硝酰中的 [XeF ]离子以及八氰合钼(Ⅳ)阴离子 [Mo(CN) ]和八氟合锆(Ⅳ)阴离子 [ZrF ]。

过渡金属化合物

在一些化合物中VSEPR理论不能正确的预测分子空间构型。

IIA族卤化物

许多过渡金属化合物的几何构型不能用VSEPR理论解释,可以归结于价层电子中没有 孤对电子以及核心的 电子与 配体的相互作用。这些化合物的结构可以用VALBOND理论预测,包括金属 氢化物和 烷基配合物(例如六甲基钨),这个理论的基础是 杂化轨道和 三中心四电子键模型。 晶体场理论是另一个经常可以解释 配合物几何构型的理论。

一些AX2E2型分子

较重 碱土金属的三原子卤化物的气相结构(例如:钙、锶、钡的卤化物,MX )并不像预测的那样为直线形,而是V形。(X-M-X的大致键角: CaF2,145°; SrF2,120°; BaF2,108°;SrCl ,130°; BaCl2,115°;BaBr ,115°;BaI ,105°).格莱斯皮(Ronald Gillespie)提出这是因为配体与金属原子的内层电子发生相互作用,极化使得内层电子云不是完全球面对称,因此导致了分子构型的变化。

一些形如AX6E1的分子

一个例子是 氧化锂分子,即Li O,它的中间构型是直线形而不是弯曲的,这一点可以归结于如果构型是弯曲的,锂原子之间将产生强烈的排斥作用。   另一个例子是O(SiH ) (二甲硅醚)的Si-O-Si键的键角为144.1°,与其他分子中的键角相比差别较大,比如Cl O (110.9°)、(CH ) O (111.7°)以及N(CH ) (110.9°)。格莱斯皮的合理解释是孤对电子的位置不同。当配体的电负性与中心原子类似或更大时,孤对电子有能力排斥其他电子对,导致键角较小。当中心原子电负性较大时,就像O(SiH ) 中,孤对电子的定域不明显,排斥作用较弱,这种结合导致了强配体之间的排斥(-SiH 与上面的例子相比是一个比较大的配体)使得Si-O-Si键的键角比预想的要大。

与其他相关理论的对比

一些AX E 型分子,例如含有Te(IV)或Bi(III)离子的化合物如TeCl 、TeBr 、BiCl 、BiBr 和BiI 是正八面体结构;其孤对电子并不影响其构型。 一种合理化解释是因为配体原子排列的拥挤没有给孤对电子留下空间;另一种合理化解释是 惰性电子对效应。

词条图册

价层电子对互斥理论、 价键理论和 分子轨道理论都是关于分子如何构成的理论。价键理论主要关注于σ键和π键的形成,通过研究受成键情况影响的轨道形状描述分子的形状。价键理论也会借助VSEPR。分子轨道理论则是关于原子和电子是如何组成分子或多原子离子的一个更精密的理论。

相关百科
返回顶部
产品求购 求购