电子半导体

目录导航

简介

半导体:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质称为半导体:

半导体

室温时电阻率约在1mΩ·cm~1GΩ·cm之间(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因上角标暂不可用,暂用当前方法描述),温度升高时电阻率则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

多样性

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可

特点

半导体[2]五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

★在光照和热辐射条件下,其导电性有明显的变化。

晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。

空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。

电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

空穴电流:自由电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。

载流子:运载电荷的粒子称为载流子。

导体电的特点:导体导电只有一种载流子,即自由电子导电。

本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。

复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。

结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。

杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。

P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。

多数载流子:P型半导体中,空穴的浓度大于自由电子的浓度,称为多数载流子,简称多子。

少数载流子:P型半导体中,自由电子为少数载流子,简称少子。

受主原子:杂质原子中的空位吸收电子,称受主原子。

P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。

N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置形成N型半导体。

多子:N型半导体中,多子为自由电子。

少子:N型半导体中,少子为空穴。

施主原子:杂质原子可以提供电子,称施主原子。

N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

结论:

多子的浓度主要决定于杂质浓度。

少子的浓度主要决定于温度。

PN结的形成:将P型半导体与N型半导体制作在同一块硅片上,

  PN结的形成过程

在它们的交界面就形成PN结。

PN结的形成过程:如图所示,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。

扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。

空间电荷区:由于扩散运动使得PN结交界面产生一片复合区域,可以说这里没有多子,也没有少子。因为刚刚扩散过来就会立刻与异性复合,此运动不断发生着(此处请专家斟酌)。P区一侧出现负离子区,N区出现正离子区,它们基本上是固定的,称为空间电荷区。

电场形成:空间电荷区形成内电场。

空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。

漂移运动:在电场力作用下,载流子的运动称漂移运动。

电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。

耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。

PN结的特点:具有单向导电性。

相关百科
返回顶部
产品求购 求购